
Verilog Tutorial
By

Deepak Kumar Tala

http://www.asic−world.com

Sep−12−2005

1

DISCLAIMER

I don't makes any claims, promises or guarantees about the accuracy,
completeness, or adequacy of the contents of this tutorial and

expressly disclaims liability for errors and omissions in the contents of
this tutorial. No warranty of any kind, implied, expressed or statutory,

including but not limited to the warranties of non−infringement of third
party rights, title, merchantability, fitness for a particular purpose and
freedom from computer virus, is given with respect to the contents of
this tutorial or its hyperlinks to other Internet resources. Reference in

this tutorial to any specific commercial products, processes, or
services, or the use of any trade, firm or corporation name is for the

information, and does not constitute endorsement, recommendation, or
favoring by me. All the source code and Tutorials are to be used on

your own risk. All the ideas and views in this tutorial are my own and
are not by any means related to my employer.

www.asic−world.com 2

INTRODUCTION
CHAPTER 1

www.asic−world.com 3

Introduction
Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware description Language
is a language used to describe a digital system, for example, a network switch, a microprocessor
or a memory or a simple flip−flop. This just means that, by using a HDL one can describe any
hardware (digital) at any level.

1// D flip−flop Code
2module d_ff (d, clk, q, q_bar);
3input d ,clk;
4output q, q_bar;
5wire d ,clk;
6reg q, q_bar;
7
8always @ (posedge clk)
9begin

10 q <= d;
11 q_bar <= !d;
12end
13
14endmodule

One can describe a simple Flip flop as that in above figure as well as one can describe a
complicated designs having 1 million gates. Verilog is one of the HDL languages available in the
industry for designing the Hardware. Verilog allows us to design a Digital design at Behavior Level,
Register Transfer Level (RTL), Gate level and at switch level. Verilog allows hardware designers to
express their designs with behavioral constructs, deterring the details of implementation to a later
stage of design in the final design.

Many engineers who want to learn Verilog, most often ask this question, how much time it will take
to learn Verilog?, Well my answer to them is "It may not take more then one week, if you
happen to know at least one programming language".

Design Styles
Verilog like any other hardware description language, permits the designers to design a design in
either Bottom−up or Top−down methodology.

Bottom−Up Design

The traditional method of electronic design is bottom−up. Each design is performed at the
gate−level using the standard gates (Refer to the Digital Section for more details) With increasing

www.asic−world.com INTRODUCTION 4

complexity of new designs this approach is nearly impossible to maintain. New systems consist of
ASIC or microprocessors with a complexity of thousands of transistors. These traditional
bottom−up designs have to give way to new structural, hierarchical design methods. Without these
new design practices it would be impossible to handle the new complexity.

Top−Down Design

The desired design−style of all designers is the top−down design. A real top−down design allows
early testing, easy change of different technologies, a structured system design and offers many
other advantages. But it is very difficult to follow a pure top−down design. Due to this fact most
designs are mix of both the methods, implementing some key elements of both design styles.

Figure shows a Top−Down design approach.

Abstraction Levels of Verilog
Verilog supports a design at many different levels of abstraction. Three of them are very important:

Behavioral level•

www.asic−world.com INTRODUCTION 5

Register−Transfer Level•
Gate Level•

Behavioral level

This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself is
sequential, that means it consists of a set of instructions that are executed one after the other.
Functions, Tasks and Always blocks are the main elements. There is no regard to the structural
realization of the design.

Register−Transfer Level

Designs using the Register−Transfer Level specify the characteristics of a circuit by operations
and the transfer of data between the registers. An explicit clock is used. RTL design contains exact
timing possibility, operations are scheduled to occur at certain times. Modern definition of a RTL
code is "Any code that is synthesizable is called RTL code".

Gate Level

Within the logic level the characteristics of a system are described by logical links and their timing
properties. All signals are discrete signals. They can only have definite logical values (`0', `1', `X',
`Z`). The usable operations are predefined logic primitives (AND, OR, NOT etc gates). Using gate
level modeling might not be a good idea for any level of logic design. Gate level code is generated
by tools like synthesis tools and this netlist is used for gate level simulation and for backend.

www.asic−world.com INTRODUCTION 6

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com INTRODUCTION 7

HISTORY OF VERILOG
CHAPTER 2

www.asic−world.com HISTORY OF VERILOG 8

History Of Verilog
Verilog was started initially as a proprietary hardware modeling language by Gateway Design
Automation Inc. around 1984. It is rumored that the original language was designed by taking
features from the most popular HDL language of the time, called HiLo as well as from traditional
computer language such as C. At that time, Verilog was not standardized and the language
modified itself in almost all the revisions that came out within 1984 to 1990.

Verilog simulator was first used beginning in 1985 and was extended substantially through
1987.The implementation was the Verilog simulator sold by Gateway. The first major extension
was Verilog−XL, which added a few features and implemented the infamous "XL algorithm" which
was a very efficient method for doing gate−level simulation.

The time was late 1990. Cadence Design System, whose primary product at that time included
Thin film process simulator, decided to acquire Gateway Automation System. Along with other
Gateway product, Cadence now became the owner of the Verilog language, and continued to
market Verilog as both a language and a simulator. At the same time, Synopsys was marketing the
top−down design methodology, using Verilog. This was a powerful combination.

In 1990, Cadence recognized that if Verilog remained a closed language, the pressures of
standardization would eventually cause the industry to shift to VHDL. Consequently, Cadence
organized Open Verilog International (OVI), and in 1991 gave it the documentation for the Verilog
Hardware Description Language. This was the event which "opened" the language.

OVI did a considerable amount of work to improve the Language Reference Manual (LRM),
clarifying things and making the language specification as vendor−independent as possible.

Soon it was realized, that if there were too many companies in the market for Verilog, potentially
everybody would like to do what Gateway did so far − changing the language for their own benefit.
This would defeat the main purpose of releasing the language to public domain. As a result in
1994, the IEEE 1364 working group was formed to turn the OVI LRM into an IEEE standard. This
effort was concluded with a successful ballot in 1995, and Verilog became an IEEE standard in
December, 1995.

When Cadence gave OVI the LRM, several companies began working on Verilog simulators. In
1992, the first of these were announced, and by 1993 there were several Verilog simulators
available from companies other than Cadence. The most successful of these was VCS, the Verilog
Compiled Simulator, from Chronologic Simulation. This was a true compiler as opposed to an
interpreter, which is what Verilog−XL was. As a result, compile time was substantial, but simulation
execution speed was much faster.

In the meantime, the popularity of Verilog and PLI was rising exponentially. Verilog as a HDL found
more admirers than well−formed and federally funded VHDL. It was only a matter of time before
people in OVI realized the need of a more universally accepted standard. Accordingly, the board of
directors of OVI requested IEEE to form a working committee for establishing Verilog as an IEEE
standard. The working committee 1364 was formed in mid 1993 and on October 14, 1993, it had

www.asic−world.com HISTORY OF VERILOG 9

its first meeting.

The standard, which combined both the Verilog language syntax and the PLI in a single volume,
was passed in May 1995 and now known as IEEE Std. 1364−1995.

After many years, new features have been added to Verilog, and new version is called Verilog
2001. This version seems to have fixed lot of problems that Verilog 1995 had. This version is
called 1364−2000. Only waiting now is that all the tool vendors implementing it.

www.asic−world.com HISTORY OF VERILOG 10

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com HISTORY OF VERILOG 11

DESIGN AND TOOL FLOW
CHAPTER 3

www.asic−world.com DESIGN AND TOOL FLOW 12

Introduction
Being new to Verilog you might want to try some examples and try designing something new. I
have listed the tool flow that could be used to achieve this. I have personally tried this flow and
found this to be working just fine for me. Here I have taken only front end design part of the tool
flow and bit of FPGA design flow that can be done without any fat money spent on tools. If you
have any suggestions or questions please don't hesitate to mail me. (Note : I have missed steps
in P&R, Will add then shortly)

Various stages of ASIC/FPGA

Specification : Word processor like Word, Kwriter, AbiWord, Open Office.•
High Level Design : Word processor like Word, Kwriter, AbiWord, for drawing waveform
use tools like waveformer or testbencher or Word, Open Office.

•

Micro Design/Low level design: Word processor like Word, Kwriter, AbiWord, for drawing
waveform use tools like waveformer or testbencher or Word. For FSM StateCAD or some
similar tool, Open Office.

•

RTL Coding : Vim, Emacs, conTEXT, HDL TurboWriter•
Simulation : Modelsim, VCS, Verilog−XL, Veriwell, Finsim, iVerilog, VeriDOS.•
Synthesis : Design Compiler, FPGA Compiler, Synplify, Leonardo Spectrum. You can
download this from FPGA vendors like Altera and Xilinx for free.

•

Place & Route : For FPGA use FPGA' vendors P&R tool. ASIC tools require expensive
P&R tools like Apollo. Students can use LASI, Magic.

•

Post Si Validation : For ASIC and FPGA, the chip needs to be tested in real environment.
Board design, device drivers needs to be in place.

•

Figure : Typical Design flow

www.asic−world.com DESIGN AND TOOL FLOW 13

Specification

This is the stage at which we define what are the important parameters of the system/design that
you are planning to design. Simple example would be, like I want to design a counter, it should be
4 bit wide, should have synchronous reset, with active high enable, When reset is active, counter
output should go to "0". You can use Microsoft Word, or GNU Abiword or Openoffice for entering
the specification.

High Level Design

This is the stage at which you define various blocks in the design and how they communicate. Lets
assume that we need to design microprocessor, High level design means splitting the design into
blocks based on their function, In our case various blocks are registers, ALU, Instruction Decode,
Memory Interface, etc. You can use Microsoft Word, or KWriter or Abiword or Openoffice for
entering high level design.

www.asic−world.com DESIGN AND TOOL FLOW 14

Figure : I8155 High Level Block Diagram

Micro Design/Low level design

Low level design or Micro design is the phase in which, designer describes how each block is
implemented. It contains details of State machines, counters, Mux, decoders, internal registers.
For state machine entry you can use either Word, or special tools like StateCAD. It is always a
good idea if waveform is drawn at various interfaces. This is phase, where one spends lot of time.

Figure : Sample Low level design

RTL Coding

In RTL coding, Micro Design is converted into Verilog/VHDL code, using synthesizable constructs
of the language. Normally we use vim editor, but I prefer conTEXT and Nedit editor, it all depends
on which editor you like. Some use Emacs.

1module addbit (
2a , // first input
3b , // Second input
4ci , // Carry input
5sum , // sum output
6co // carry output
7);
8//Input declaration

www.asic−world.com DESIGN AND TOOL FLOW 15

9input a;
10input b;
11input ci;
12//Ouput declaration
13output sum;
14output co;
15//Port Data types
16wire a;
17wire b;
18wire ci;
19wire sum;
20wire co;
21//Code starts here
22assign {co,sum} = a + b + ci;
23
24endmodule // End of Module addbit

Figure : Sample RTL code

Simulation

Simulation is the process of verifying the functional characteristics of models at any level of
abstraction. We use simulators to simulate the the Hardware models. To test if the RTL code
meets the functional requirements of the specification, see if all the RTL blocks are functionally
correct. To achieve this we need to write testbench, which generates clk, reset and required test
vectors. A sample testbench for a counter is as shown below. Normally we spend 60−70% of time
in verification of design.

Figure : Sample Testbench Env

We use waveform output from the simulator to see if the DUT (Device Under Test) is functionally
correct. Most of the simulators comes with waveform viewer, As design becomes complex, we
write self checking testbench, where testbench applies the test vector, compares the output of
DUT with expected value.

There is another kind of simulation, called timing simulation, which is done after synthesis or
after P&R (Place and Route). Here we include the gate delays and wire delays and see if DUT
works at rated clock speed. This is also called as SDF simulation or gate level simulation.

www.asic−world.com DESIGN AND TOOL FLOW 16

Figure : 4 bit Up Counter Waveform

Synthesis

Synthesis is process in which synthesis tool like design compiler or Synplify takes the RTL in
Verilog or VHDL, target technology, and constrains as input and maps the RTL to target
technology primitives. Synthesis tool after mapping the RTL to gates, also do the minimal amount
of timing analysis to see if the mapped design meeting the timing requirements. (Important thing
to note is, synthesis tools are not aware of wire delays, they know only gate delays). After the
synthesis there are couple of things that are normally done before passing the netlist to backend
(Place and Route)

Formal Verification : Check if the RTL to gate mapping is correct.•
Scan insertion : Insert the scan chain in the case of ASIC.•

Figure : Synthesis Flow

Place & Route

Gatelevel netlist from the synthesis tool is taken and imported into place and route tool in Verilog
netlist format. All the gates and flip−flops are places, Clock tree synthesis and reset is routed. After
this each block is routed. Output of the P&R tool is GDS file, this files is used by foundry for
fabricating the ASIC. Normally the P&R tool are used to output the SDF file, which is back
annotated along with the gatelevel netlist from P&R into static analysis tool like Prime Time to do
timing analysis.

www.asic−world.com DESIGN AND TOOL FLOW 17

Figure : Sample micro−processor placement

Figure : J−K Flip−Flop

Post Silicon Validation

Once the chip (silicon) is back from fab, it needs to put in real environment and tested before it can
be released into Market. Since the speed of simulation with RTL is very slow (number clocks per
second), there is always possibility to find a bug in Post silicon validation.

www.asic−world.com DESIGN AND TOOL FLOW 18

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com DESIGN AND TOOL FLOW 19

MY FIRST PROGRAM IN VERILOG
CHAPTER 4

www.asic−world.com MY FIRST PROGRAM IN VERILOG 20

Introduction
If you refer to any book on programming language it starts with "hello World" program, once you

have written the program, you can be sure that you can do something in that language .

Well I am also going to show how to write a "hello world" program in Verilog, followed by
"counter" design in Verilog.

Hello World Program

1//−−−
2// This is my first Verilog Program
3// Design Name : hello_world
4// File Name : hello_world.v
5// Function : This program will print 'hello world'
6// Coder : Deepak
7//−−−
8module hello_world ;
9

10initial begin
11 $display ("Hello World by Deepak");
12 #10 $finish;
13end
14
15endmodule // End of Module hello_world

Words in green are comments, blue are reserved words, Any program in Verilog starts with
reserved word module , In the above example line 7 contains module hello_world. (Note: We can
have compiler pre−processor statements like `include, `define statements before module
declaration)

Line 9 contains the initial block, this block gets executed only once after the simulation starts and
at time=0 (0ns). This block contains two statements, which are enclosed within begin at line 7 and
end at line 12. In Verilog if you have multiple lines within a block, you need to use begin and end.

Hello World Program Output

 Hello World by Deepak

Counter Design Block

www.asic−world.com MY FIRST PROGRAM IN VERILOG 21

Counter Design Specs

4−bit synchronous up counter.•
active high, synchronous reset.•
Active high enable.•

Counter Design

1//−−−
2// This is my second Verilog Design
3// Design Name : first_counter
4// File Name : first_counter.v
5// Function : This is a 4 bit up−counter with
6// Synchronous active high reset and
7// with active high enable signal
8//−−−
9module first_counter (

10clock , // Clock input ot the design
11reset , // active high, synchronous Reset input
12enable , // Active high enabel signal for counter
13counter_out // 4 bit vector output of the counter
14); // End of port list
15//−−−−−−−−−−−−−Input Ports−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16input clock ;
17input reset ;
18input enable ;
19//−−−−−−−−−−−−−Output Ports−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20output [3:0] counter_out ;
21//−−−−−−−−−−−−−Input ports Data Type−−−−−−−−−−−−−−−−−−−
22// By rule all the input ports should be wires
23wire clock ;
24wire reset ;
25wire enable ;
26//−−−−−−−−−−−−−Output Ports Data Type−−−−−−−−−−−−−−−−−−
27// Output port can be a storage element (reg) or a wire
28reg [3:0] counter_out ;
29
30//−−−−−−−−−−−−Code Starts Here−−−−−−−−−−−−−−−−−−−−−−−−−
31// Since this counter is a positive edge trigged one,
32// We trigger the below block with respect to positive
33// edge of the clock.
34always @ (posedge clock)
35begin : COUNTER // Block Name
36 // At every rising edge of clock we check if reset is active

www.asic−world.com MY FIRST PROGRAM IN VERILOG 22

37 // If active, we load the counter output with 4'b0000
38 if (reset == 1'b1) begin

39 counter_out <= #1 4'b0000;
40 end

41 // If enable is active, then we increment the counter
42 else if (enable == 1'b1) begin

43 counter_out <= #1 counter_out + 1;
44 end

45end // End of Block COUNTER
46
47endmodule // End of Module counter

Counter Test Bench

Any digital circuit, not matter how complex it is needs to be tested. For the counter logic, we need
to provide clock, reset logic. Once counter is out of reset we toggle the enable input to counter,
and check with waveform to see if counter is counting correctly. We do the same in Verilog.

Counter testbench consists of clock generator, reset control, enable control and compare logic.
Below is the simple code of testbench without the compare logic.

1`include "first_counter.v"
2module first_counter_tb();
3// Declare inputs as regs and outputs as wires
4reg clock, reset, enable;
5wire [3:0] counter_out;
6
7// Initialize all variables
8initial begin
9 $display ("time\t clk reset enable counter");

10 $monitor ("%g\t %b %b %b %b" ,
11 $time, clock, reset, enable, counter_out);
12 clock = 1; // initial value of clock

www.asic−world.com MY FIRST PROGRAM IN VERILOG 23

13 reset = 0; // initial value of reset
14 enable = 0; // initial value of enable
15 #5 reset = 1; // Assert the reset
16 #10 reset = 0; // De−assert the reset
17 #5 enable = 1; // Assert enable
18 #100 enable = 0; // De−assert enable
19 #10 $finish; // Terminate simulation
20end
21
22// Clock generator
23always begin
24 #5 clock = ~clock; // Toggle clock every 5 ticks
25end
26
27// Connect DUT to test bench
28first_counter U_counter (
29clock,
30reset,
31enable,
32counter_out
33);
34
35endmodule

 time clk reset enable counter
 0 1 0 0 xxxx
 5 0 1 0 xxxx
 10 1 1 0 xxxx
 11 1 1 0 0000
 15 0 0 0 0000
 20 1 0 1 0000
 21 1 0 1 0001
 25 0 0 1 0001
 30 1 0 1 0001
 31 1 0 1 0010
 35 0 0 1 0010
 40 1 0 1 0010
 41 1 0 1 0011
 45 0 0 1 0011
 50 1 0 1 0011
 51 1 0 1 0100
 55 0 0 1 0100
 60 1 0 1 0100
 61 1 0 1 0101
 65 0 0 1 0101
 70 1 0 1 0101
 71 1 0 1 0110
 75 0 0 1 0110
 80 1 0 1 0110
 81 1 0 1 0111
 85 0 0 1 0111
 90 1 0 1 0111
 91 1 0 1 1000
 95 0 0 1 1000
 100 1 0 1 1000
 101 1 0 1 1001
 105 0 0 1 1001
 110 1 0 1 1001
 111 1 0 1 1010

www.asic−world.com MY FIRST PROGRAM IN VERILOG 24

 115 0 0 1 1010
 120 1 0 0 1010
 125 0 0 0 1010

Counter Waveform

www.asic−world.com MY FIRST PROGRAM IN VERILOG 25

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com MY FIRST PROGRAM IN VERILOG 26

VERILOG HDL SYNTAX AND SEMANTICS
CHAPTER 5

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 27

Lexical Conventions
The basic lexical conventions used by Verilog HDL are similar to those in the C programming
language. Verilog HDL is a case−sensitive language. All keywords are in lowercase.

White Space

White space can contain the characters for blanks, tabs, newlines, and form feeds. These
characters are ignored except when they serve to separate other tokens. However, blanks and
tabs are significant in strings.

White space characters are :

Blank spaces•
Tabs•
Carriage returns•
New−line•
Form−feeds•

Examples of White Spaces

Functional Equivalent Code

Bad Code : Never write code like this.
1module addbit(a,b,ci,sum,co);
2input a,b,ci;output sum co;
3wire a,b,ci,sum,co;endmodule

Good Code : Nice way to write code.
1module addbit (
2a,
3b,
4ci,
5sum,
6co);
7input a;
8input b;
9input ci;

10output sum;
11output co;
12wire a;
13wire b;
14wire ci;
15wire sum;
16wire co;
17
18endmodule

Comments

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 28

There are two forms to introduce comments.

Single line comments begin with the token // and end with a carriage return•
Multi Line comments begin with the token /* and end with the token */•

Some how I like single line comments.

Examples of Comments

1/* This is a
2Multi line comment
3example */
4module addbit (
5a,
6b,
7ci,
8sum,
9co);

10
11// Input Ports Single line comment
12input a;
13input b;
14input ci;
15// Output ports
16output sum;
17output co;
18// Data Types
19wire a;
20wire b;
21wire ci;
22wire sum;
23wire co;
24
25endmodule

Case Sensitivity

Verilog HDL is case sensitive

Lower case letters are unique from upper case letters•
All Verilog keywords are lower case•

Examples of Unique names

1input // a Verilog Keyword
2wire // a Verilog Keyword
3WIRE // a unique name (not a keyword)
4Wire // a unique name (not a keyword)

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 29

NOTE : Never use the Verilog keywords as unique name, even if the case is different.

Identifiers

Identifiers are names used to give an object, such as a register or a function or a module, a name
so that it can be referenced from other places in a description.

Identifiers must begin with an alphabetic character or the underscore character (a−z A−Z _
)

•

Identifiers may contain alphabetic characters, numeric characters, the underscore, and the
dollar sign (a−z A−Z 0−9 _ $)

•

Identifiers can be up to 1024 characters long.•

Examples of legal identifiers
data_input mu
clk_input my$clk
i386 A

Escaped Identifiers

Verilog HDL allows any character to be used in an identifier by escaping the identifier. Escaped
identifiers provide a means of including any of the printable ASCII characters in an identifier (the
decimal values 33 through 126, or 21 through 7E in hexadecimal).

Escaped identifiers begin with the back slash (\)•
Entire identifier is escaped by the back slash.•
Escaped identif ier is terminated by white space (Characters such as commas,
parentheses, and semicolons become part of the escaped identifier unless preceded by a
white space)

•

Terminate escaped identifiers with white space, otherwise characters that should follow the
identifier are considered as part of it.

•

Examples of escape identifiers
Verilog does not allow to identifier to start with a numeric character. So if you really wan to use a
identifier to start with a numeric value then use a escape character as shown below.

1// There must be white space after the
2// string which uses escape character
3module \1dff (
4q, // Q output
5\q~ , // Q_out output
6d, // D input
7cl$k, // CLOCK input
8\reset* // Reset input
9);

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 30

10
11input d, cl$k, \reset* ;
12output q, \q~ ;
13
14endmodule

Numbers in Verilog
You can specify constant numbers in decimal, hexadecimal, octal, or binary format. Negative
numbers are represented in 2's complement form. When used in a number, the question mark (?)
character is the Verilog alternative for the z character. The underscore character (_) is legal
anywhere in a number except as the first character, where it is ignored.

Integer Numbers

Verilog HDL allows integer numbers to be specified as

Sized or unsized numbers (Unsized size is 32 bits)•
In a radix of binary, octal, decimal, or hexadecimal•
Radix and hex digits (a,b,c,d,e,f) are case insensitive•
Spaces are allowed between the size, radix and value•

Syntax: <size>'<radix> <value>

Example of Integer Numbers

Integer Stored as

1 00000000000000000000000000000001

8'hAA 10101010

6'b10_0011 100011

'hF 00000000000000000000000000001111

Verilog expands to be fill the specified by working from right−to−left

When is smaller than , then left−most bits of are truncated•
When is larger than , then left−most bits are filled, based on the value of the left−most bit in
.

•

Left most '0' or '1' are filled with '0'♦
Left most 'Z' are filled with 'Z'♦
Left most 'X' are filled with 'X'♦

Example of Integer Numbers

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 31

Integer Stored as

6'hCA 001010

6'hA 001010

16'bZ ZZZZZZZZZZZZZZZZ

8'bx xxxxxxxx

Real Numbers

Verilog supports real constants and variables•
Verilog converts real numbers to integers by rounding•
Real Numbers can not contain 'Z' and 'X'•
Real numbers may be specified in either decimal or scientific notation•
< value >.< value >•
< mantissa >E< exponent >•
Real numbers are rounded off to the nearest integer when assigning to integer.•

Example of Real Numbers

Real Number Decimal notation

1.2 1.2

0.6 0.6

3.5E6 3,500000.0

Signed and Unsigned Numbers

Verilog Supports both the type of numbers, but with certain restrictions. Like in C language we
don't have int and unint types to say if a number is signed integer or unsigned integer.

Any number that does not have negative sign prefix is a positive number. Or indirect way would be
"Unsigned"

Negative numbers can be specified by putting a minus sign before the size for a constant number,
thus become signed numbers. Verilog internally represents negative numbers in 2's compliment
format. An optional signed specifier can be added for signed arithmetic.

Examples

Number Description

32'hDEAD_BEEF Unsigned or signed positive Number

−14'h1234 Signed negative number

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 32

Below example file show how Verilog treats signed and unsigned numbers.
1//**
2// Signed Number Example
3//
4// Written by Deepak Kumar Tala
5//**
6module signed_number;
7
8reg [31:0] a;
9

10initial begin
11 a = 14'h1234;
12 $display ("Current Value of a = %h" , a);
13 a = −14'h1234;
14 $display ("Current Value of a = %h" , a);
15 a = 32'hDEAD_BEEF;
16 $display ("Current Value of a = %h" , a);
17 a = −32'hDEAD_BEEF;
18 $display ("Current Value of a = %h" , a);
19 #10 $finish;
20end
21
22endmodule

 Current Value of a = 00001234
 Current Value of a = ffffedcc
 Current Value of a = deadbeef
 Current Value of a = 21524111

Modules

Module are the building blocks of Verilog designs•
You create design hierarchy by instantiating modules in other modules.•
An instance of a module is a use of that module in another, higher−level module.•

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 33

Ports

Ports allow communication between a module and its environment.•
All but the top−level modules in a hierarchy have ports.•
Ports can be associated by order or by name.•

You declare ports to be input, output or inout. The port declaration syntax is :
input [range_val:range_var] list_of_identifiers;
output [range_val:range_var] list_of_identifiers;
inout [range_val:range_var] list_of_identifiers;

NOTE : As a good coding practice, there should be only one port identifier per line, as shown
below

Examples : Port Declaration

1input clk ; // clock input
2input [15:0] data_in ; // 16 bit data input bus
3output [7:0] count ; // 8 bit counter output
4inout data_bi ; // Bi−Directional data bus

Examples : A complete Example in Verilog

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 34

1module addbit (
2a , // first input
3b , // Second input
4ci , // Carry input
5sum , // sum output
6co // carry output
7);
8//Input declaration
9input a;

10input b;
11input ci;
12//Ouput declaration
13output sum;
14output co;
15//Port Data types
16wire a;
17wire b;
18wire ci;
19wire sum;
20wire co;
21//Code starts here
22assign {co,sum} = a + b + ci;
23
24endmodule // End of Module addbit

Modules connected by port order (implicit)
Here order should match correctly. Normally it not a good idea to connect ports implicit. Could
cause problem in debug (locate the port which is causing compiler compile error), when any new
port is added or deleted.

1//−−−
2// This is simple adder Program
3// Design Name : adder_implicit
4// File Name : adder_implicit.v
5// Function : This program shows how implicit
6// port connection are done
7// Coder : Deepak
8//−−−
9module adder_implicit (

10result , // Output of the adder
11carry , // Carry output of adder
12r1 , // first input
13r2 , // second input
14ci // carry input
15);
16
17// Input Port Declarations
18input [3:0] r1 ;
19input [3:0] r2 ;
20input ci ;
21
22// Output Port Declarations
23output [3:0] result ;
24output carry ;
25
26// Port Wires

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 35

27wire [3:0] r1 ;
28wire [3:0] r2 ;
29wire ci ;
30wire [3:0] result ;
31wire carry ;
32
33// Internal variables
34wire c1 ;
35wire c2 ;
36wire c3 ;
37
38// Code Starts Here
39addbit u0 (
40r1[0] ,
41r2[0] ,
42ci ,
43result[0] ,
44c1
45);
46
47addbit u1 (
48r1[1] ,
49r2[1] ,
50c1 ,
51result[1] ,
52c2
53);
54
55addbit u2 (
56r1[2] ,
57r2[2] ,
58c2 ,
59result[2] ,
60c3
61);
62
63addbit u3 (
64r1[3] ,
65r2[3] ,
66c3 ,
67result[3] ,
68carry
69);
70
71endmodule // End Of Module adder

Modules connect by name
Here the name should match with the leaf module, the order is not important.

1//−−−
2// This is simple adder Program
3// Design Name : adder_implicit
4// File Name : adder_implicit.v
5// Function : This program shows how explicit
6// port connection are done
7// Coder : Deepak
8//−−−
9module adder_explicit (

10result , // Output of the adder

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 36

11carry , // Carry output of adder
12r1 , // first input
13r2 , // second input
14ci // carry input
15);
16
17// Input Port Declarations
18input [3:0] r1 ;
19input [3:0] r2 ;
20input ci ;
21
22// Output Port Declarations
23output [3:0] result ;
24output carry ;
25
26// Port Wires
27wire [3:0] r1 ;
28wire [3:0] r2 ;
29wire ci ;
30wire [3:0] result ;
31wire carry ;
32
33// Internal variables
34wire c1 ;
35wire c2 ;
36wire c3 ;
37
38// Code Starts Here
39
40// Code Starts Here
41
42addbit u0 (
43.a (r1[0]) ,
44.b (r2[0]) ,
45.ci (ci) ,
46.sum (result[0]) ,
47.co (c1)
48);
49
50addbit u1 (
51.a (r1[1]) ,
52.b (r2[1]) ,
53.ci (c1) ,
54.sum (result[1]) ,
55.co (c2)
56);
57
58addbit u2 (
59.a (r1[2]) ,
60.b (r2[2]) ,
61.ci (c2) ,
62.sum (result[2]) ,
63.co (c3)
64);
65
66addbit u3 (
67.a (r1[3]) ,
68.b (r2[3]) ,
69.ci (c3) ,
70.sum (result[3]) ,
71.co (carry)

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 37

72);
73
74endmodule // End Of Module adder

Instantiating a module

1//−−−
2// This is simple parity Program
3// Design Name : parity
4// File Name : parity.v
5// Function : This program shows how a verilog
6// primitive/module port connection are
7// done
8// Coder : Deepak
9//−−−

10module parity (
11a , // First input
12b , // Second input
13c , // Third Input
14d , // Fourth Input
15y // Parity output
16);
17
18// Input Declaration
19input a ;
20input b ;
21input c ;
22input d ;
23// Ouput Declaration
24output y ;
25// port data types
26wire a ;
27wire b ;
28wire c ;
29wire d ;
30wire y ;
31// Internal variables
32wire out_0 ;
33wire out_1 ;
34
35// Code starts Here
36xor u0 (
37out_0 ,
38a ,
39b
40);
41
42xor u1 (
43out_1 ,
44c ,
45d
46);
47
48xor u2 (
49y ,
50out_0 ,
51out_1
52);

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 38

53
54endmodule // End Of Module parity

Question : What is difference between u0 in module adder and u0 in module parity?

Schematic

Port Connection Rules

Inputs : internally must always be type net, externally the inputs can be connected to
variable reg or net type.

•

Outputs : internally can be type net or reg, externally the outputs must be connected to a
variable net type.

•

Inouts : internally or externally must always be type net, can only be connected to a
variable net type.

•

Width matching : It is legal to connect internal and external ports of different sizes. But
beware, synthesis tools could report problems.

•

Unconnected ports : unconnected ports are allowed by using a ","•
The net data types are used to connect structure•
A net data type is required if a signal can be driven a structural connection.•

Example − Implicit

dff u0 (q,,clk,d,rst,pre); // Here second port is not connected

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 39

Example − Explicit

dff u0 (
.q (q_out),
.q_bar (),
.clk (clk_in),
.d (d_in),
.rst (rst_in),
.pre (pre_in)
); // Here second port is not connected

Hierarchical Identifiers
Hierarchical path names are based on the top module identifier followed by module instant
identifiers, separated by periods.

This is basically useful, while we want to see the signal inside a lower module or want to force a
value on to internal module. Below example shows hows to monitor the value of internal module
signal.

Example

1//−−−
2// This is simple adder Program
3// Design Name : adder_hier
4// File Name : adder_hier.v
5// Function : This program shows verilog hier path works
6// Coder : Deepak
7//−−−
8`include "addbit.v"
9module adder_hier (

10result , // Output of the adder
11carry , // Carry output of adder
12r1 , // first input
13r2 , // second input
14ci // carry input
15);
16
17// Input Port Declarations
18input [3:0] r1 ;
19input [3:0] r2 ;
20input ci ;
21
22// Output Port Declarations
23output [3:0] result ;
24output carry ;

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 40

25
26// Port Wires
27wire [3:0] r1 ;
28wire [3:0] r2 ;
29wire ci ;
30wire [3:0] result ;
31wire carry ;
32
33// Internal variables
34wire c1 ;
35wire c2 ;
36wire c3 ;
37
38// Code Starts Here
39addbit u0 (r1[0],r2[0],ci,result[0],c1);
40addbit u1 (r1[1],r2[1],c1,result[1],c2);
41addbit u2 (r1[2],r2[2],c2,result[2],c3);
42addbit u3 (r1[3],r2[3],c3,result[3],carry);
43
44endmodule // End Of Module adder
45
46module tb();
47
48reg [3:0] r1,r2;
49reg ci;
50wire [3:0] result;
51wire carry;
52
53// Drive the inputs
54initial begin
55 r1 = 0;
56 r2 = 0;
57 ci = 0;
58 #10 r1 = 10;
59 #10 r2 = 2;
60 #10 ci = 1;
61 #10 $display("+−−+");
62 $finish;
63end
64
65// Connect the lower module
66adder_hier U (result,carry,r1,r2,ci);
67
68// Hier demo here
69initial begin
70 $display("+−−+");
71 $display("| r1 | r2 | ci | u0.sum | u1.sum | u2.sum | u3.sum |");
72 $display("+−−+");
73 $monitor("| %h | %h | %h | %h | %h | %h | %h |" ,
74 r1,r2,ci, tb.U.u0.sum, tb.U.u1.sum, tb.U.u2.sum, tb.U.u3.sum);
75end
76
77endmodule

 +−−+
 | r1 | r2 | ci | u0.sum | u1.sum | u2.sum | u3.sum |
 +−−+
 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 41

a	0	0	0	1	0	1
a	2	0	0	0	1	1
a	2	1	1	0	1	1
 +−−+

Data Types
Verilog Language has two primary data types

Nets − represents structural connections between components.•
Registers − represent variables used to store data.•

Every signal has a data type associated with it:

Explicitly declared with a declaration in your Verilog code.•
Implicitly declared with no declaration but used to connect structural building blocks in
your code.

•

Implicit declaration is always a net type "wire" and is one bit wide.•

Types of Nets

Each net type has functionality that is used to model different types of hardware (such as PMOS,
NMOS, CMOS, etc)

Net Data Type Functionality

wire, tri Interconnecting wire − no special resolution function

wor, trior Wired outputs OR together (models ECL)

wand,triand Wired outputs AND together (models open−collector)

tri0,tri1 Net pulls−down or pulls−up when not driven

supply0,suppy1 Net has a constant logic 0 or logic 1 (supply strength)

trireg

Note : Of all the net types, wire is the one which is most widely used

Register Data Types

Registers store the last value assigned to them until another assignment statement
changes their value.

•

Registers represent data storage constructs.•
You can create arrays of the regs called memories.•
register data types are used as variables in procedural blocks.•
A register data type is required if a signal is assigned a value within a procedural block•

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 42

Procedural blocks begin with keyword initial and always.•

Data Types Functionality

reg Unsigned variable

integer Signed variable − 32 bits

time Unsigned integer − 64 bits

real Double precision floating point variable

Note : Of all the register types, reg is the one which is most widely used

Strings
A string is a sequence of characters enclosed by double quotes and all contained on a single line.
Strings used as operands in expressions and assignments are treated as a sequence of eight−bit
ASCII values, with one eight−bit ASCII value representing one character. To declare a variable to
store a string, declare a register large enough to hold the maximum number of characters the
variable will hold. Note that no extra bits are required to hold a termination character; Verilog does
not store a string termination character. Strings can be manipulated using the standard operators.

When a variable is larger than required to hold a value being assigned, Verilog pads the contents
on the left with zeros after the assignment. This is consistent with the padding that occurs during
assignment of non−string values.

Certain characters can be used in strings only when preceded by an introductory character called
an escape character. The following table lists these characters in the right−hand column with the
escape sequence that represents the character in the left−hand column.

Special Characters in Strings

Character Description

\n New line character

\t Tab character

\\ Backslash (\) character

\" Double quote (") character

\ddd A character specified in 1−3 octal digits (0 <= d <= 7)

%% Percent (%) character

Example

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 43

1//−−−
2// Design Name : strings
3// File Name : strings.v
4// Function : This program shows how string
5// can be stored in reg
6// Coder : Deepak Kumar Tala
7//−−−
8module strings();
9// Declare a register variable that is 21 bytes

10reg [8*21:0] string ;
11
12initial begin
13 string = "This is sample string" ;
14 $display ("%s \n" , string);
15end
16
17endmodule

 This is sample string

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 44

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com VERILOG HDL SYNTAX AND SEMANTICS 45

GATE LEVEL MODELING
CHAPTER 6

www.asic−world.com GATE LEVEL MODELING 46

Introduction
Verilog has built in primitives like gates, transmission gates, and switches. This are rarely used for
in design work, but are used in post synthesis world for modeling the ASIC/FPGA cells, this cells
are then used for gate level simulation or what is called as SDF simulation. Also the output netlist
formate from the synthesis tool which is imported into place and route tool is also in Verilog gate
level primitives.

Gate Primitives

The gates have one scalar output and multiple scalar inputs. The 1st terminal in the list of gate
terminals is an output and the other terminals are inputs.

Gate Description

and N−input AND gate

nand N−input NAND gate

or N−input OR gate

nor N−input NOR gate

xor N−input XOR gate

xnor N−input XNOR gate

Examples

1module gates();
2
3wire out0;
4wire out1;
5wire out2;
6reg in1,in2,in3,in4;
7
8not U1(out0,in1);
9and U2(out1,in1,in2,in3,in4);

10xor U3(out2,in1,in2,in3);
11
12initial begin

www.asic−world.com GATE LEVEL MODELING 47

13
$monitor("in1 = %b in2 = %b in3 = %b in4 = %b out0 = %b out1 = %b out2 = %b"
,in1,in2,in3,in4,out0,out1,out2);

14 in1 = 0;
15 in2 = 0;
16 in3 = 0;
17 in4 = 0;
18 #1 in1 = 1;
19 #1 in2 = 1;
20 #1 in3 = 1;
21 #1 in4 = 1;
22 #1 $finish;
23end
24
25endmodule

 in1 = 0 in2 = 0 in3 = 0 in4 = 0 out0 = 1 out1 = 0 out2 = 0
 in1 = 1 in2 = 0 in3 = 0 in4 = 0 out0 = 0 out1 = 0 out2 = 1
 in1 = 1 in2 = 1 in3 = 0 in4 = 0 out0 = 0 out1 = 0 out2 = 0
 in1 = 1 in2 = 1 in3 = 1 in4 = 0 out0 = 0 out1 = 0 out2 = 1
 in1 = 1 in2 = 1 in3 = 1 in4 = 1 out0 = 0 out1 = 1 out2 = 1

Transmission Gate Primitives

Gate Description

not N−output inverter

buf N−output buffer.

bufif0 Tri−state buffer, Active low en.

bufif1 Tri−state buffer, Active high en.

notif0 Tristate inverter, Low en.

notif1 Tristate inverter, High en.

Examples

www.asic−world.com GATE LEVEL MODELING 48

1module transmission_gates();
2
3reg data_enable_low, in;
4wire data_bus, out1, out2;
5
6bufif0 U1(data_bus,in, data_enable_low);
7buf U2(out1,in);
8not U3(out2,in);
9

10initial begin
11 $monitor("in = %b data_enable_low = %b out1 = %b out2 = %b" ,in,data_enable_low, out1, out2);
12 data_enable_low = 0;
13 in = 0;
14 #4 data_enable_low = 1;
15 #8 $finish;
16end
17
18always #2 in = ~in;
19
20endmodule

 in = 0 data_enable_low = 0 out1 = 0 out2 = 1
 in = 1 data_enable_low = 0 out1 = 1 out2 = 0
 in = 0 data_enable_low = 1 out1 = 0 out2 = 1
 in = 1 data_enable_low = 1 out1 = 1 out2 = 0
 in = 0 data_enable_low = 1 out1 = 0 out2 = 1
 in = 1 data_enable_low = 1 out1 = 1 out2 = 0

Switch Primitives

www.asic−world.com GATE LEVEL MODELING 49

Gate Description

1. pmos Uni−directional PMOS switch

1. rpmos Resistive PMOS switch

2. nmos Uni−directional NMOS switch

2. rnmos Resistive NMOS switch

3. cmos Uni−directional CMOS switch

3. rcmos Resistive CMOS switch

4. tranif1 Bi−directional transistor (High)

4. tranif0 Bi−directional transistor (Low)

5. rtranif1 Resistive Transistor (High)

5. rtranif0 Resistive Transistor (Low)

6. tran Bi−directional pass transistor

6. rtran Resistive pass transistor

7. pullup Pull up resistor

8. pulldown Pull down resistor

Transmission gates are bi−directional and can be resistive or non−resistive.

Syntax: keyword unique_name (inout1, inout2, control);

Examples

1module switch_primitives();
2
3wire net1, net2, net3;
4wire net4, net5, net6;
5
6tranif0 my_gate1 (net1, net2, net3);
7rtranif1 my_gate2 (net4, net5, net6);
8
9endmodule

Transmission gates tran and rtran are permanently on and do not have a control line. Tran can be
used to interface two wires with separate drives, and rtran can be used to weaken signals.
Resistive devices reduce the signal strength which appears on the output by one level. All the
switches only pass signals from source to drain, incorrect wiring of the devices will result in high
impedance outputs.

Logic Values and signal Strengths
The Verilog HDL has got four logic values

www.asic−world.com GATE LEVEL MODELING 50

Logic Value Description

0 zero, low, false

1 one, high, true

z or Z high impedance, floating

x or X unknown, uninitialized, contention

Verilog Strength Levels

Strength Level Specification Keyword

7 Supply Drive supply0 supply1

6 Strong Pull strong0 strong1

5 Pull Drive pull0 pull1

4 Large Capacitance large

3 Weak Drive weak0 weak1

2 Medium Capacitance medium

1 Small Capacitance small

0 Hi Impedance highz0 highz1

Example

Two buffers that has output
A : Pull 1
B : Supply 0
Since supply 0 is stronger then pull 1, Output C takes value of B.

Example

www.asic−world.com GATE LEVEL MODELING 51

Two buffers that has output
A : Supply 1
B : Large 1
Since Supply 1 is stronger then Large 1, Output C takes the value of A

Designing Using Primitives
Designing using primitives is used only in library development, where the ASIC vendor provides
the ASIC library verilog description using verilog primitives and user defines primitives (UDP).

AND Gate from NAND Gate

Code

1// Structural model of AND gate from two NANDS
2module and_from_nand();
3
4reg X, Y;
5wire F, W;
6// Two instantiations of the module NAND
7nand U1(W,X, Y);
8nand U2(F, W, W);
9

10// Testbench Code
11initial begin
12 $monitor ("X = %b Y = %b F = %b" , X, Y, F);
13 X = 0;
14 Y = 0;
15 #1 X = 1;

www.asic−world.com GATE LEVEL MODELING 52

16 #1 Y = 1;
17 #1 X = 0;
18 #1 $finish;
19end
20
21endmodule

 X = 0 Y = 0 F = 0
 X = 1 Y = 0 F = 0
 X = 1 Y = 1 F = 1
 X = 0 Y = 1 F = 0

D−Flip flop from NAND Gate

Verilog Code

1module dff_from_nand();
2wire Q,Q_BAR;
3reg D,CLK;
4
5nand U1 (X,D,CLK) ;
6nand U2 (Y,X,CLK) ;
7nand U3 (Q,Q_BAR,X);
8nand U4 (Q_BAR,Q,Y);
9

10// Testbench of above code
11initial begin
12 $monitor("CLK = %b D = %b Q = %b Q_BAR = %b" ,CLK, D, Q, Q_BAR);
13 CLK = 0;
14 D = 0;
15 #3 D = 1;
16 #3 D = 0;
17 #3 $finish;
18end
19
20always #2 CLK = ~CLK;
21
22endmodule

www.asic−world.com GATE LEVEL MODELING 53

 CLK = 0 D = 0 Q = x Q_BAR = x
 CLK = 1 D = 0 Q = 0 Q_BAR = 1
 CLK = 1 D = 1 Q = 1 Q_BAR = 0
 CLK = 0 D = 1 Q = 1 Q_BAR = 0
 CLK = 1 D = 0 Q = 0 Q_BAR = 1
 CLK = 0 D = 0 Q = 0 Q_BAR = 1

Multiplexer from primitives

Verilog Code

1module mux_from_gates ();
2reg c0,c1,c2,c3,A,B;
3wire Y;
4//Invert the sel signals
5not (a_inv, A);
6not (b_inv, B);
7// 3−input AND gate
8and (y0,c0,a_inv,b_inv);
9and (y1,c1,a_inv,B);

10and (y2,c2,A,b_inv);
11and (y3,c3,A,B);
12// 4−input OR gate
13or (Y, y0,y1,y2,y3);
14
15// Testbench Code goes here
16initial begin
17 $monitor ("c0 = %b c1 = %b c2 = %b c3 = %b A = %b B = %b Y = %b" , c0, c1, c2, c3, A, B, Y);
18 c0 = 0;

www.asic−world.com GATE LEVEL MODELING 54

19 c1 = 0;
20 c2 = 0;
21 c3 = 0;
22 A = 0;
23 B = 0;
24 #1 A = 1;
25 #2 B = 1;
26 #4 A = 0;
27 #8 $finish;
28end
29
30always #1 c0 = ~c0;
31always #2 c1 = ~c1;
32always #3 c2 = ~c2;
33always #4 c3 = ~c3;
34
35endmodule

 c0 = 0 c1 = 0 c2 = 0 c3 = 0 A = 0 B = 0 Y = 0
 c0 = 1 c1 = 0 c2 = 0 c3 = 0 A = 1 B = 0 Y = 0
 c0 = 0 c1 = 1 c2 = 0 c3 = 0 A = 1 B = 0 Y = 0
 c0 = 1 c1 = 1 c2 = 1 c3 = 0 A = 1 B = 1 Y = 0
 c0 = 0 c1 = 0 c2 = 1 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 1 c1 = 0 c2 = 1 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 0 c1 = 1 c2 = 0 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 1 c1 = 1 c2 = 0 c3 = 1 A = 0 B = 1 Y = 1
 c0 = 0 c1 = 0 c2 = 0 c3 = 0 A = 0 B = 1 Y = 0
 c0 = 1 c1 = 0 c2 = 1 c3 = 0 A = 0 B = 1 Y = 0
 c0 = 0 c1 = 1 c2 = 1 c3 = 0 A = 0 B = 1 Y = 1
 c0 = 1 c1 = 1 c2 = 1 c3 = 0 A = 0 B = 1 Y = 1
 c0 = 0 c1 = 0 c2 = 0 c3 = 1 A = 0 B = 1 Y = 0
 c0 = 1 c1 = 0 c2 = 0 c3 = 1 A = 0 B = 1 Y = 0
 c0 = 0 c1 = 1 c2 = 0 c3 = 1 A = 0 B = 1 Y = 1

Gate and Switch delays
In real circuits , logic gates haves delays associated with them. Verilog provides the mechanism to
associate delays with gates.

Rise, Fall and Turn−off delays.•
Minimal, Typical, and Maximum delays.•

Rise Delay

The rise delay is associated with a gate output transition to 1 from another value (0,x,z).

www.asic−world.com GATE LEVEL MODELING 55

Fall Delay

The fall delay is associated with a gate output transition to 0 from another value (1,x,z).

Turn−off Delay

The Turn−off delay is associated with a gate output transition to z from another value (0,1,x).

Min Value

The min value is the minimum delay value that the gate is expected to have.

Typ Value

The typ value is the typical delay value that the gate is expected to have.

Max Value

The max value is the maximum delay value that the gate is expected to have.

Examples

www.asic−world.com GATE LEVEL MODELING 56

1module delay_example();
2
3wire out1,out2,out3,out4,out5,out6;
4reg b,c;
5
6// Delay for all transitions
7or #5 u_or (out1,b,c);
8// Rise and fall delay
9and #(1,2) u_and (out2,b,c);

10// Rise, fall and turn off delay
11nor #(1,2,3) u_nor (out3,b,c);
12//One Delay, min, typ and max
13nand #(1:2:3) u_nand (out4,b,c);
14//Two delays, min,typ and max
15buf #(1:4:8,4:5:6) u_buf (out5,b);
16//Three delays, min, typ, and max
17notif1 #(1:2:3,4:5:6,7:8:9) u_notif1 (out6,b,c);
18
19//Testbench code
20initial begin

21 $monitor ("Time = %g b = %b c=%b out1=%b out2=%b out3=%b out4=%b out5=%b out6=%b" , $time, b, c ,
out1, out2, out3, out4, out5, out6);

22 b = 0;
23 c = 0;
24 #10 b = 1;
25 #10 c = 1;
26 #10 b = 0;
27 #10 $finish;
28end
29
30endmodule

 Time = 0 b = 0 c=0 out1=x out2=x out3=x out4=x out5=x out6=x
 Time = 1 b = 0 c=0 out1=x out2=x out3=1 out4=x out5=x out6=x
 Time = 2 b = 0 c=0 out1=x out2=0 out3=1 out4=1 out5=x out6=z
 Time = 5 b = 0 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 8 b = 0 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 10 b = 1 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 12 b = 1 c=0 out1=0 out2=0 out3=0 out4=1 out5=0 out6=z
 Time = 14 b = 1 c=0 out1=0 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 15 b = 1 c=0 out1=1 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 20 b = 1 c=1 out1=1 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 21 b = 1 c=1 out1=1 out2=1 out3=0 out4=1 out5=1 out6=z
 Time = 22 b = 1 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=z
 Time = 25 b = 1 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=0
 Time = 30 b = 0 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=0
 Time = 32 b = 0 c=1 out1=1 out2=0 out3=0 out4=1 out5=1 out6=1
 Time = 35 b = 0 c=1 out1=1 out2=0 out3=0 out4=1 out5=0 out6=1

Gate Delay Code Example

www.asic−world.com GATE LEVEL MODELING 57

1module buf_gate ();
2reg in;
3wire out;
4
5buf #(5) (out,in);
6
7initial begin
8 $monitor ("Time = %g in = %b out=%b" , $time, in, out);
9 in = 0;

10 #10 in = 1;
11 #10 in = 0;
12 #10 $finish;
13end
14
15endmodule

 Time = 0 in = 0 out=x
 Time = 5 in = 0 out=0
 Time = 10 in = 1 out=0
 Time = 15 in = 1 out=1
 Time = 20 in = 0 out=1
 Time = 25 in = 0 out=0

Gate Delay Code Example

1module buf_gate1 ();
2reg in;
3wire out;
4
5buf #(2,3) (out,in);
6
7initial begin
8 $monitor ("Time = %g in = %b out=%b" , $time, in, out);
9 in = 0;

10 #10 in = 1;
11 #10 in = 0;
12 #10 $finish;
13end
14
15endmodule

www.asic−world.com GATE LEVEL MODELING 58

 Time = 0 in = 0 out=x
 Time = 3 in = 0 out=0
 Time = 10 in = 1 out=0
 Time = 12 in = 1 out=1
 Time = 20 in = 0 out=1
 Time = 23 in = 0 out=0

Gate Delay Code Example

1module delay();
2reg in;
3wire rise_delay, fall_delay, all_delay;
4
5initial begin

6 $monitor ("Time = %g in = %b rise_delay = %b fall_delay = %b all_delay = %b" , $time, in, rise_delay, fall_delay,
all_delay);

7 in = 0;
8 #10 in = 1;
9 #10 in = 0;

10 #20 $finish;
11end
12
13buf #(1,0)U_rise (rise_delay,in);
14buf #(0,1)U_fall (fall_delay,in);
15buf #1 U_all (all_delay,in);
16
17endmodule

 Time = 0 in = 0 rise_delay = 0 fall_delay = x all_delay = x
 Time = 1 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0
 Time = 10 in = 1 rise_delay = 0 fall_delay = 1 all_delay = 0
 Time = 11 in = 1 rise_delay = 1 fall_delay = 1 all_delay = 1
 Time = 20 in = 0 rise_delay = 0 fall_delay = 1 all_delay = 1
 Time = 21 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0

www.asic−world.com GATE LEVEL MODELING 59

N−Input Primitives
The and, nand, or, nor, xor, and xnor primitives have one output and any number of inputs

The single output is the first terminal•
All other terminals are inputs•

Examples

1module n_in_primitive();
2
3wire out1,out2,out3;
4reg in1,in2,in3,in4;
5
6// Two input AND gate
7and u_and1 (out1, in1, in2);
8// four input AND gate
9and u_and2 (out2, in1, in2, in3, in4);

10// three input XNOR gate
11xnor u_xnor1 (out3, in1, in2, in3);
12
13//Testbench Code
14initial begin

15 $monitor ("in1 = %b in2 = %b in3 = %b in4 = %b out1 = %b out2 = %b out3 = %b" , in1, in2, in3, in4, out1, out2,
out3);

16 in1 = 0;
17 in2 = 0;
18 in3 = 0;
19 in4 = 0;
20 #1 in1 = 1;
21 #1 in2 = 1;
22 #1 in3 = 1;
23 #1 in4 = 1;
24 #1 $finish;
25end
26
27endmodule

 in1 = 0 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 1
 in1 = 1 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 0
 in1 = 1 in2 = 1 in3 = 0 in4 = 0 out1 = 1 out2 = 0 out3 = 1
 in1 = 1 in2 = 1 in3 = 1 in4 = 0 out1 = 1 out2 = 0 out3 = 0
 in1 = 1 in2 = 1 in3 = 1 in4 = 1 out1 = 1 out2 = 1 out3 = 0

www.asic−world.com GATE LEVEL MODELING 60

N−Output Primitives
The buf and not primitives have any number of outputs and one input

The output are in first terminals listed.•
The last terminal is the single input.•

Examples

1module n_out_primitive();
2
3wire out,out_0,out_1,out_2,out_3,out_a,out_b,out_c;
4wire in;
5
6// one output Buffer gate
7buf u_buf0 (out,in);
8// four output Buffer gate
9buf u_buf1 (out_0, out_1, out_2, out_3, in);

10// three output Invertor gate
11not u_not0 (out_a, out_b, out_c, in);
12
13endmodule

www.asic−world.com GATE LEVEL MODELING 61

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com GATE LEVEL MODELING 62

USER DEFINED PRIMITIVES
CHAPTER 7

www.asic−world.com USER DEFINED PRIMITIVES 63

Introduction
Verilog has built in primitives like gates, transmission gates, and switches. This is rather small
number of primitives, if we need more complex primitives, then Verilog provides UDP, or simply
User Defined Primitives. Using UDP we can model

Combinational Logic•
Sequention Logic•

We can include timing information along with this UDP to model complete ASIC library models.

Syntax

UDP begins with reserve word primitive and ends with endprimitive. This should follow by
ports/terminals of primitive. This is kind of same as we do for module definition. UDP's should be
defined outside module and endmodule

1//This code shows how input/output ports
2// and primitve is declared
3primitive udp_syntax (
4a, // Port a
5b, // Port b
6c, // Port c
7d // Port d
8);
9output a;

10input b,c,d;
11
12// UDP function code here
13
14endprimitive

In the above code, udp_syntax is the primitive name, it contains ports a, b,c,d.

The formal syntax of the UDP definition is as follows

<UDP>
 ::= primitive <name_of_UDP> (<output_terminal_name>,
 <input_terminal_name> <,<input_terminal_name>>*) ;
 <UDP_declaration>+
 <UDP_initial_statement>?
 <table_definition>
 endprimitive

<name_of_UDP>
 ::= <IDENTIFIER>

<UDP_declaration>
 ::= <UDP_output_declaration>
 ||= <reg_declaration>
 ||= <UDP_input_declaration>

www.asic−world.com USER DEFINED PRIMITIVES 64

<UDP_output_declaration>
 ::= output <output_terminal _name>;
<reg_declaration>
 ::= reg <output_terminal_name> ;

<UDP_input_declaration>
 ::= input <input_terminal_name> <,<input_terminal_name>>* ;

<UDP_initial_statement>
 ::= initial <output_terminal_name> = <init_val> ;

<init_val>
 ::= 1'b0
 ||= 1'b1
 ||= 1'bx
 ||= 1
 ||= 0

<table_definition>
 ::= table
 <table_entries>
 endtable

<table_entries>
 ::= <combinational_entry>+
 ||= <sequential_entry>+

<combinational_entry>
 ::= <level_input_list> : <OUTPUT_SYMBOL> ;

<sequential_entry>
 ::= <input_list> : <state> : <next_state> ;

<input_list>
 ::= <level_input_list>
 ||= <edge_input_list>

<level_input_list>
 ::= <LEVEL_SYMBOL>+

<edge_input_list>
 ::= <LEVEL_SYMBOL>* <edge> <LEVEL_SYMBOL>*

<edge>
 ::= (<LEVEL_SYMBOL> <LEVEL_SYMBOL>)
 ||= <EDGE_SYMBOL>

<state>
 ::= <LEVEL_SYMBOL>

<next_state>
 ::= <OUTPUT_SYMBOL>
 ||= −

UDP ports rules

A UDP can contain only one output and up to 10 inputs max.•
Output Port should be the first port followed by one or more input ports.•
All UDP ports are scalar, i.e. Vector ports are not allowed.•

www.asic−world.com USER DEFINED PRIMITIVES 65

UDP's can not have bidirectional ports.•
The output terminal of a sequential UDP requires an additional declaration as type reg.•
It is illegal to declare a reg for the output terminal of a combinational UDP•

Body

Functionality of primitive (both combinational and sequential) is described inside a table, and it
ends with reserve word endtable as shown in code below. For sequential UDP, we can use initial
to assign initial value to output.

1// This code shows how UDP body looks like
2primitive udp_body (
3a, // Port a
4b, // Port b
5c // Port c
6);
7output a;
8input b,c;
9

10// UDP function code here
11// A = B | C;
12table
13// B C : A
14? 1 : 1;
151 ? : 1;
160 0 : 0;
17endtable
18
19endprimitive

Note: A UDP cannot use 'z' in input table

TestBench to Check above UDP
1`include "udp_body.v"
2module udp_body_tb();
3
4reg b,c;
5wire a;
6
7udp_body udp (a,b,c);
8
9initial begin

10 $monitor(" B = %b C = %b A = %b" ,b,c,a);
11 b = 0;
12 c = 0;
13 #1 b = 1;
14 #1 b = 0;
15 #1 c = 1;
16 #1 b = 1'bx;
17 #1 c = 0;
18 #1 b = 1;
19 #1 c = 1'bx;
20 #1 b = 0;

www.asic−world.com USER DEFINED PRIMITIVES 66

21 #1 $finish;
22end
23
24endmodule

Simulator Output

 B = 0 C = 0 A = 0
 B = 1 C = 0 A = 1
 B = 0 C = 0 A = 0
 B = 0 C = 1 A = 1
 B = x C = 1 A = 1
 B = x C = 0 A = x
 B = 1 C = 0 A = 1
 B = 1 C = x A = 1
 B = 0 C = x A = x

Table
Table is used for describing the function of UDP. Verilog reserve world table marks the start of
table and reserve word endtable marks the end of table.

Each line inside a table is one condition, as and when a input changes, the input condition is
matched and the output is evaluated to reflect the new change in input.

initial
initial statement is used for initialization of sequential UDP's. This statement begins with the
keyword initial. The statement that follows must be an assignment statement that assigns a single
bit literal value to the output terminal reg.

1primitive udp_initial (a,b,c);
2output a;
3input b,c;
4reg a;
5// a has value of 1 at start of sim
6initial a = 1'b1;
7
8table
9// udp_initial behaviour

10endtable
11
12endprimitive

Symbols

UDP uses special symbols to describe functions, like rising edge, don't care so on. Below table
shows the symbols that are used in UDP's

www.asic−world.com USER DEFINED PRIMITIVES 67

Symbol Interpretation Explanation

? 0 or 1 or X ? means the variable can be 0 or 1 or x

b 0 or 1 Same as ?, but x is not included

f (10) Falling edge on an input

r (01) Rising edge on an input

p (01) or (0x) or (x1) or (1z) or (z1) Rising edge including x and z

n (10) or (1x) or (x0) or (0z) or (z0) Falling edge including x and z

* (??) All transitions

− no change No Change

We will see them in detail in next few pages.

Combinational UDPs

In combinational UDPs, the output is determined as a function of the current input. Whenever an
input changes value, the UDP is evaluated and one of the state table rows is matched. The output
state is set to the value indicated by that row. This is kind of same as condition statements, each
line in table is one condition.

Combinational UDPs have one field per input and one field for the output. Input fields and output
fields are separated with colon. Each row of the table is terminated by a semicolon. For example,
the following state table entry specifies that when the three inputs are all 0, the output is 0.

1primitive udp_combo (.....);
2
3table
40 0 0 : 0;
5...
6endtable
7
8endprimitive

The order of the inputs in the state table description must correspond to the order of the inputs in
the port list in the UDP definition header. It is not related to the order of the input declarations.

Each row in the table defines the output for a particular combination of input states. If all inputs are
specified as x, then the output must be specified as x. All combinations that are not explicitly
specified result in a default output state of x.

Example
In below example entry, the ? represents a don't−care condition. This symbol indicates iterative
substitution of 1, 0, and x. The table entry specifies that when the inputs are 0 and 1, the output is
1 no matter what the value of the current state is.

www.asic−world.com USER DEFINED PRIMITIVES 68

You do not have to explicitly specify every possible input combination. All combinations that are
not explicitly specified result in a default output state of x.

It is illegal to have the same combination of inputs, specified for different outputs.

1// This code shows how UDP body looks like
2primitive udp_body (
3a, // Port a
4b, // Port b
5c // Port c
6);
7output a;
8input b,c;
9

10// UDP function code here
11// A = B | C;
12table
13// B C : A
14? 1 : 1;
151 ? : 1;
160 0 : 0;
17endtable
18
19endprimitive

TestBench to Check above UDP

1`include "udp_body.v"
2module udp_body_tb();
3
4reg b,c;
5wire a;
6
7udp_body udp (a,b,c);
8
9initial begin

10 $monitor(" B = %b C = %b A = %b" ,b,c,a);
11 b = 0;
12 c = 0;
13 #1 b = 1;
14 #1 b = 0;
15 #1 c = 1;
16 #1 b = 1'bx;
17 #1 c = 0;
18 #1 b = 1;
19 #1 c = 1'bx;
20 #1 b = 0;
21 #1 $finish;
22end
23
24endmodule

www.asic−world.com USER DEFINED PRIMITIVES 69

Simulator Output

 B = 0 C = 0 A = 0
 B = 1 C = 0 A = 1
 B = 0 C = 0 A = 0
 B = 0 C = 1 A = 1
 B = x C = 1 A = 1
 B = x C = 0 A = x
 B = 1 C = 0 A = 1
 B = 1 C = x A = 1
 B = 0 C = x A = x

Level Senstive Sequential UDP

Level−sensitive sequential behavior is represented the same way as combinational behavior,
except that the output is declared to be of type reg, and there is an additional field in each table
entry. This new field represents the current state of the UDP.

The output is declared as reg to indicate that there is an internal state. The output value of
the UDP is always the same as the internal state.

•

A field for the current state has been added. This field is separated by colons from the
inputs and the output.

•

Sequential UDPs have an additional field inserted between the input fields and the output field,
compared to combinational UDP. This additional field represents the current state of the UDP and
is considered equivalent to the current output value. It is delimited by colons.

1primitive udp_seq (.....);
2
3table
40 0 0 : 0 : 0;
5...
6endtable
7
8endprimitive

Example

1primitive udp_latch(q, clk, d) ;
2output q;
3input clk, d;
4
5reg q;
6
7table
8//clk d q q+
90 1 : ? : 1 ;

100 0 : ? : 0 ;

www.asic−world.com USER DEFINED PRIMITIVES 70

111 ? : ? : − ;
12endtable
13
14endprimitive

Edge−Sensitive UDPs

In level−sensitive behavior, the values of the inputs and the current state are sufficient to
determine the output value. Edge−sensitive behavior differs in that changes in the output are
triggered by specific transitions of the inputs.

As in the combinational and the level−sensitive entries, a ? implies iteration of the entry over the
values 0, 1, and x. A dash (−) in the output column indicates no value change.

All unspecified transitions default to the output value x. Thus, in the previous example, transition of
clock from 0 to x with data equal to 0 and current state equal to 1 result in the output q going to x.

All transitions that should not affect the output must be explicitly specified. Otherwise, they will
cause the value of the output to change to x. If the UDP is sensitive to edges of any input, the
desired output state must be specified for all edges of all inputs.

Example

1primitive udp_sequential(q, clk, d);
2output q;
3input clk, d;
4
5reg q;
6
7table
8// obtain output on rising edge of clk
9// clk d q q+

10(01) 0 : ? : 0 ;
11(01) 1 : ? : 1 ;
12(0?) 1 : 1 : 1 ;
13(0?) 0 : 0 : 0 ;
14// ignore negative edge of clk
15(?0) ? : ? : − ;
16// ignore d changes on steady clk
17? (??) : ? : − ;
18endtable
19
20endprimitive

Example UDP with initial

www.asic−world.com USER DEFINED PRIMITIVES 71

1primitive udp_sequential_initial(q, clk, d);
2output q;
3input clk, d;
4
5reg q;
6
7initial begin
8 q = 0;
9end

10
11table
12// obtain output on rising edge of clk
13// clk d q q+
14(01) 0 : ? : 0 ;
15(01) 1 : ? : 1 ;
16(0?) 1 : 1 : 1 ;
17(0?) 0 : 0 : 0 ;
18// ignore negative edge of clk
19(?0) ? : ? : − ;
20// ignore d changes on steady clk
21? (??) : ? : − ;
22endtable
23
24endprimitive

www.asic−world.com USER DEFINED PRIMITIVES 72

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com USER DEFINED PRIMITIVES 73

VERILOG OPERATORS
CHAPTER 8

www.asic−world.com VERILOG OPERATORS 74

Arithmetic Operators

Binary: +, −, *, /, % (the modulus operator)•
Unary: +, − (This is used to specify the sign)•
Integer division truncates any fractional part•
The result of a modulus operation takes the sign of the first operand•
If any operand bit value is the unknown value x, then the entire result value is x•
Register data types are used as unsigned values (Negative numbers are stored in two¿s
complement form)

•

Example

1module arithmetic_operators();
2
3initial begin
4 $display (" 5 + 10 = %d" , 5 + 10);
5 $display (" 5 − 10 = %d" , 5 − 10);
6 $display (" 10 − 5 = %d" , 10 − 5);
7 $display (" 10 * 5 = %d" , 10 * 5);
8 $display (" 10 / 5 = %d" , 10 / 5);
9 $display (" 10 / −5 = %d" , 10 / −5);

10 $display (" 10 %s 3 = %d" ,
11 $display (" +5 = %d" , +5);
12 $display (" −5 = %d" , −5);
13 #10 $finish;
14end
15
16endmodule

 5 + 10 = 15
 5 − 10 = −5
 10 − 5 = 5
 10 * 5 = 50
 10 / 5 = 2
 10 / −5 = −2
 10 % 3 = 1
 +5 = 5
 −5 = −5

Relational Operators

Operator Description

a a less than b

a>b a greater than b

a<=b a less than or equal to b

a>=b a greater than or equal to b

www.asic−world.com VERILOG OPERATORS 75

The result is a scalar value:•
0 if the relation is false•
1 if the relation is true•
x if any of the operands has unknown x bits•

Note: If a value is x or z, then the result of that test is false (0)

Example

1module relational_operators();
2
3initial begin
4 $display (" 5 <= 10 = %b" , (5 <= 10));
5 $display (" 5 >= 10 = %b" , (5 >= 10));
6 $display (" 1'bx <= 10 = %b" , (1'bx <= 10));
7 $display (" 1'bz <= 10 = %b" , (1'bz <= 10));
8 #10 $finish;
9end

10
11endmodule

 5 <= 10 = 1
 5 >= 10 = 0
 1'bx <= 10 = 1
 1'bz <= 10 = 1

Equality Operators
There are two types of Equality operators. Case Equality and Logical Equality.

Operator Description

a === b a equal to b, including x and z (Case equality)

a !== b a not equal to b, including x and z (Case inequality)

a == b a equal to b, resulting may be unknown (logical equality)

a != b a not equal to b, result may be unknown (logical equality)

Operands are compared bit by bit, with zero filling if the two operands do not have the
same length

•

Result is 0 (false) or 1 (true)•
For the == and != operators the result is x, if either operand contains an x or a z•
For the === and !== operators bits with x and z are included in the comparison and must
match for the result to be true

•

www.asic−world.com VERILOG OPERATORS 76

Note : The result is always 0 or 1.

Example

1module equality_operators();
2
3initial begin
4 // Case Equality
5 $display (" 4'bx001 === 4'bx001 = %b" , (4'bx001 === 4'bx001));
6 $display (" 4'bx0x1 === 4'bx001 = %b" , (4'bx0x1 === 4'bx001));
7 $display (" 4'bz0x1 === 4'bz0x1 = %b" , (4'bz0x1 === 4'bz0x1));
8 $display (" 4'bz0x1 === 4'bz001 = %b" , (4'bz0x1 === 4'bz001));
9 // Case Inequality

10 $display (" 4'bx0x1 !== 4'bx001 = %b" , (4'bx0x1 !== 4'bx001));
11 $display (" 4'bz0x1 !== 4'bz001 = %b" , (4'bz0x1 !== 4'bz001));
12 // Logical Equality
13 $display (" 5 == 10 = %b" , (5 == 10));
14 $display (" 5 == 5 = %b" , (5 == 5));
15 // Logical Inequality
16 $display (" 5 != 5 = %b" , (5 != 5));
17 $display (" 5 != 6 = %b" , (5 != 6));
18 #10 $finish;
19end
20
21endmodule

 4'bx001 === 4'bx001 = 1
 4'bx0x1 === 4'bx001 = 0
 4'bz0x1 === 4'bz0x1 = 1
 4'bz0x1 === 4'bz001 = 0
 4'bx0x1 !== 4'bx001 = 1
 4'bz0x1 !== 4'bz001 = 1
 5 == 10 = 0
 5 == 5 = 1
 5 != 5 = 0
 5 != 6 = 1

Logical Operators

Operator Description

! logic negation

&& logical and

|| logical or

Expressions connected by && and || are evaluated from left to right•
Evaluation stops as soon as the result is known•
The result is a scalar value:•

www.asic−world.com VERILOG OPERATORS 77

0 if the relation is false♦
1 if the relation is true♦
x if any of the operands has unknown x bits♦

Example

1module logical_operators();
2
3initial begin
4 // Logical AND
5 $display ("1'b1 && 1'b1 = %b" , (1'b1 && 1'b1));
6 $display ("1'b1 && 1'b0 = %b" , (1'b1 && 1'b0));
7 $display ("1'b1 && 1'bx = %b" , (1'b1 && 1'bx));
8 // Logical OR
9 $display ("1'b1 || 1'b0 = %b" , (1'b1 || 1'b0));

10 $display ("1'b0 || 1'b0 = %b" , (1'b0 || 1'b0));
11 $display ("1'b0 || 1'bx = %b" , (1'b0 || 1'bx));
12 // Logical Negation
13 $display ("! 1'b1 = %b" , (! 1'b1));
14 $display ("! 1'b0 = %b" , (! 1'b0));
15 #10 $finish;
16end
17
18endmodule

 1'b1 && 1'b1 = 1
 1'b1 && 1'b0 = 0
 1'b1 && 1'bx = x
 1'b1 || 1'b0 = 1
 1'b0 || 1'b0 = 0
 1'b0 || 1'bx = x
 ! 1'b1 = 0
 ! 1'b0 = 1

Bit−wise Operators
Bitwise operators perform a bit wise operation on two operands. They take each bit in one operand
and perform the operation with the corresponding bit in the other operand. If one operand is
shorter than the other, it will be extended on left side with zeros to match the length of the longer
operand.

Operator Description

~ negation

& and

| inclusive or

^ exclusive or

^~ or ~^ exclusive nor (equivalence)

www.asic−world.com VERILOG OPERATORS 78

Computations include unknown bits, in the following way:•
~x = x♦
0&x = 0♦
1&x = x&x = x♦
1|x = 1♦
0|x = x|x = x♦
0^x = 1^x = x^x = x♦
0^~x = 1^~x = x^~x = x♦

When operands are of unequal bit length, the shorter operand is zero−filled in the most
significant bit positions

•

Example

1module bitwise_operators();
2
3initial begin
4 // Bit Wise Negation
5 $display (" ~4'b0001 = %b" , (~4'b0001));
6 $display (" ~4'bx001 = %b" , (~4'bx001));
7 $display (" ~4'bz001 = %b" , (~4'bz001));
8 // Bit Wise AND
9 $display (" 4'b0001 & 4'b1001 = %b" , (4'b0001 & 4'b1001));

10 $display (" 4'b1001 & 4'bx001 = %b" , (4'b1001 & 4'bx001));
11 $display (" 4'b1001 & 4'bz001 = %b" , (4'b1001 & 4'bz001));
12 // Bit Wise OR
13 $display (" 4'b0001 | 4'b1001 = %b" , (4'b0001 | 4'b1001));
14 $display (" 4'b0001 | 4'bx001 = %b" , (4'b0001 | 4'bx001));
15 $display (" 4'b0001 | 4'bz001 = %b" , (4'b0001 | 4'bz001));
16 // Bit Wise XOR
17 $display (" 4'b0001 ^ 4'b1001 = %b" , (4'b0001 ^ 4'b1001));
18 $display (" 4'b0001 ^ 4'bx001 = %b" , (4'b0001 ^ 4'bx001));
19 $display (" 4'b0001 ^ 4'bz001 = %b" , (4'b0001 ^ 4'bz001));
20 // Bit Wise XNOR
21 $display (" 4'b0001 ~^ 4'b1001 = %b" , (4'b0001 ~^ 4'b1001));
22 $display (" 4'b0001 ~^ 4'bx001 = %b" , (4'b0001 ~^ 4'bx001));
23 $display (" 4'b0001 ~^ 4'bz001 = %b" , (4'b0001 ~^ 4'bz001));
24 #10 $finish;
25end
26
27endmodule

 ~4'b0001 = 1110
 ~4'bx001 = x110
 ~4'bz001 = x110
 4'b0001 & 4'b1001 = 0001
 4'b1001 & 4'bx001 = x001
 4'b1001 & 4'bz001 = x001
 4'b0001 | 4'b1001 = 1001
 4'b0001 | 4'bx001 = x001
 4'b0001 | 4'bz001 = x001
 4'b0001 ^ 4'b1001 = 1000
 4'b0001 ^ 4'bx001 = x000

www.asic−world.com VERILOG OPERATORS 79

 4'b0001 ^ 4'bz001 = z000
 4'b0001 ~^ 4'b1001 = 0111
 4'b0001 ~^ 4'bx001 = x111
 4'b0001 ~^ 4'bz001 = x111

Reduction Operators

Operator Description

& and

~& nand

| or

~| nor

^ xor

^~ or ~^ xnor

Reduction operators are unary.•
They perform a bit−wise operation on a single operand to produce a single bit result.•
Reduction unary NAND and NOR operators operate as AND and OR respectively, but with
their outputs negated.

•

Unknown bits are treated as described before.♦

Example

1module reduction_operators();
2
3initial begin
4 // Bit Wise AND reduction
5 $display (" & 4'b1001 = %b" , (& 4'b1001));
6 $display (" & 4'bx111 = %b" , (& 4'bx111));
7 $display (" & 4'bz111 = %b" , (& 4'bz111));
8 // Bit Wise NAND reduction
9 $display (" ~& 4'b1001 = %b" , (~& 4'b1001));

10 $display (" ~& 4'bx001 = %b" , (~& 4'bx001));
11 $display (" ~& 4'bz001 = %b" , (~& 4'bz001));
12 // Bit Wise OR reduction
13 $display (" | 4'b1001 = %b" , (| 4'b1001));
14 $display (" | 4'bx000 = %b" , (| 4'bx000));
15 $display (" | 4'bz000 = %b" , (| 4'bz000));
16 // Bit Wise OR reduction
17 $display (" ~| 4'b1001 = %b" , (~| 4'b1001));
18 $display (" ~| 4'bx001 = %b" , (~| 4'bx001));
19 $display (" ~| 4'bz001 = %b" , (~| 4'bz001));
20 // Bit Wise XOR reduction

www.asic−world.com VERILOG OPERATORS 80

21 $display (" ^ 4'b1001 = %b" , (^ 4'b1001));
22 $display (" ^ 4'bx001 = %b" , (^ 4'bx001));
23 $display (" ^ 4'bz001 = %b" , (^ 4'bz001));
24 // Bit Wise XNOR
25 $display (" ~^ 4'b1001 = %b" , (~^ 4'b1001));
26 $display (" ~^ 4'bx001 = %b" , (~^ 4'bx001));
27 $display (" ~^ 4'bz001 = %b" , (~^ 4'bz001));
28 #10 $finish;
29end
30
31endmodule

 & 4'b1001 = 0
 & 4'bx111 = x
 & 4'bz111 = x
 ~& 4'b1001 = 1
 ~& 4'bx001 = 1
 ~& 4'bz001 = 1
 | 4'b1001 = 1
 | 4'bx000 = x
 | 4'bz000 = x
 ~| 4'b1001 = 0
 ~| 4'bx001 = 0
 ~| 4'bz001 = 0
 ^ 4'b1001 = 0
 ^ 4'bx001 = x
 ^ 4'bz001 = x
 ~^ 4'b1001 = 1
 ~^ 4'bx001 = x
 ~^ 4'bz001 = x

Shift Operators

Operator Description

<< left shift

>> right shift

The left operand is shifted by the number of bit positions given by the right operand.•
The vacated bit positions are filled with zeroes.•

Example

www.asic−world.com VERILOG OPERATORS 81

1module shift_operators();
2
3initial begin
4 // Left Shift
5 $display (" 4'b1001 << 1 = %b" , (4'b1001 << 1));
6 $display (" 4'b10x1 << 1 = %b" , (4'b10x1 << 1));
7 $display (" 4'b10z1 << 1 = %b" , (4'b10z1 << 1));
8 // Right Shift
9 $display (" 4'b1001 >> 1 = %b" , (4'b1001 >> 1));

10 $display (" 4'b10x1 >> 1 = %b" , (4'b10x1 >> 1));
11 $display (" 4'b10z1 >> 1 = %b" , (4'b10z1 >> 1));
12 #10 $finish;
13end
14
15endmodule

 4'b1001 <<1 = 0010
 4'b10x1 <<1 = 0x10
 4'b10z1 <<1 = 0z10
 4'b1001 >> 1 = 0100
 4'b10x1 >> 1 = 010x
 4'b10z1 >> 1 = 010z

Concatenation Operators

Concatenations are expressed using the brace characters { and }, with commas separating
the expressions within

•

Example: + {a, b[3:0], c, 4'b1001} // if a and c are 8−bit numbers, the results has 24
bits

♦

Unsized constant numbers are not allowed in concatenations•

Example

1module concatenation_operator();
2
3initial begin
4 // concatenation
5 $display (" {4'b1001,4'b10x1} = %b" , {4'b1001,4'b10x1});
6 #10 $finish;
7end
8
9endmodule

 {4'b1001,4'b10x1} = 100110x1

Replication Operator Operators
Replication operator is used for replication group of bits n times. Say you have 4 bit variable and
you want to replicate it 4 times to get a 16 bit variable, then we can use replication operator.

www.asic−world.com VERILOG OPERATORS 82

Operator Description

{n{m}} Replicate value m, n times

Repetition multipliers that must be constants can be used:•
{3{a}} // this is equivalent to {a, a, a}♦

Nested concatenations and replication operator are possible:•
{b, {3{c, d}}} // this is equivalent to {b, c, d, c, d, c, d}♦

Example

1module replication_operator();
2
3initial begin
4 // replication
5 $display (" {4{4'b1001} = %b" , {4{4'b1001}});
6 // replication and concatenation
7 $display (" {4{4'b1001,1'bz} = %b" , {4{4'b1001,1'bz}});
8 #10 $finish;
9end

10
11endmodule

 {4{4'b1001} = 1001100110011001
 {4{4'b1001,1'bz} = 1001z1001z1001z1001z

Conditional Operators

The conditional operator has the following C−like format:•
cond_expr ? true_expr : false_expr♦

The true_expr or the false_expr is evaluated and used as a result depending on if
cond_expr evaluates to true or false

•

Example

1module conditional_operator();
2
3wire out;
4reg enable,data;
5// Tri state buffer
6assign out = (enable) ? data : 1'bz;
7
8initial begin
9 $display ("time\t enable data out");

10 $monitor ("%g\t %b %b %b" ,$time,enable,data,out);

www.asic−world.com VERILOG OPERATORS 83

11 enable = 0;
12 data = 0;
13 #1 data = 1;
14 #1 data = 0;
15 #1 enable = 1;
16 #1 data = 1;
17 #1 data = 0;
18 #1 enable = 0;
19 #10 $finish;
20end
21
22endmodule

 time enable data out
 0 0 0 z
 1 0 1 z
 2 0 0 z
 3 1 0 0
 4 1 1 1
 5 1 0 0
 6 0 0 z

Operator Precedence

Operator Symbols

Unary, Multiply, Divide, Modulus !, ~, *, /, %

Add, Subtract, Shift +, − , <>

Relation, Equality ,<=,>=,==,!=,===,!===

Reduction &, !&,^,^~,|,~|

Logic &&, ||

Conditional ?

www.asic−world.com VERILOG OPERATORS 84

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com VERILOG OPERATORS 85

VERILOG BEHAVIORAL MODELING
CHAPTER 9

www.asic−world.com VERILOG BEHAVIORAL MODELING 86

Verilog HDL Abstraction Levels

Behavioral Models : Higher level of modeling where behavior of logic is modeled.•
RTL Models : Logic is modeled at register level•
Structural Models : Logic is modeled at both register level and gate level.•

Procedural Blocks
Verilog behavioral code is inside procedures blocks, but there is a exception, some behavioral
code also exist outside procedures blocks. We can see this in detail as we make progress.

There are two types of procedural blocks in Verilog

initial : initial blocks execute only once at time zero (start execution at time zero).•
always : always blocks loop to execute over and over again, in other words as name
means, it executes always.

•

Example − initial

1module initial_example();
2reg clk,reset,enable,data;
3
4initial begin
5 clk = 0;
6 reset = 0;
7 enable = 0;
8 data = 0;
9end

10
11endmodule

In the above example, the initial block execution and always block execution starts at time 0.
Always blocks waits for the the event, here positive edge of clock, where as initial block without
waiting just executed all the statements within begin and end statement.

Example − always

www.asic−world.com VERILOG BEHAVIORAL MODELING 87

1module always_example();
2reg clk,reset,enable,q_in,data;
3
4always @ (posedge clk)
5if (reset) begin
6 data <= 0;
7end else if (enable) begin
8 data <= q_in;
9end

10
11endmodule

In always block, when the trigger event occurs, the code inside begin and end is executed and the
once again the always block waits for next posedge of clock. This process of waiting and executing
on event is repeated till simulation stops.

Procedural Assignment Statements

Procedural assignment statements assign values to reg , integer , real , or time variables
and can not assign values to nets (wire data types)

•

You can assign to the register (reg data type) the value of a net (wire), constant, another
register, or a specific value.

•

Example − Bad procedural assignment

1module initial_bad();
2reg clk,reset;
3wire enable,data;
4
5initial begin
6 clk = 0;
7 reset = 0;
8 enable = 0;
9 data = 0;

10end
11
12endmodule

Example − Good procedural assignment

1module initial_good();
2reg clk,reset,enable,data;
3
4initial begin
5 clk = 0;
6 reset = 0;
7 enable = 0;
8 data = 0;
9end

www.asic−world.com VERILOG BEHAVIORAL MODELING 88

10
11endmodule

Procedural Assignment Groups

If a procedure block contains more then one statement, those statements must be enclosed within

Sequential begin − end block•
Parallel fork − join block•

When using begin−end, we can give name to that group. This is called named blocks.

Example − "begin−end"

1module initial_begin_end();
2reg clk,reset,enable,data;
3
4initial begin
5 #1 clk = 0;
6 #10 reset = 0;
7 #5 enable = 0;
8 #3 data = 0;
9end

10
11endmodule

Begin : clk gets 0 after 1 time unit, reset gets 0 after 11 time units, enable after 16 time units, data
after 19 units. All the statements are executed in sequentially.

Example − "fork−join"

1module initial_fork_join();
2reg clk,reset,enable,data;
3
4initial fork
5 #1 clk = 0;
6 #10 reset = 0;
7 #5 enable = 0;
8 #3 data = 0;
9join

10
11endmodule

Fork : clk gets value after 1 time unit, reset after 10 time units, enable after 5 time units, data after
3 time units. All the statements are executed in parallel.

Sequential Statement Groups

www.asic−world.com VERILOG BEHAVIORAL MODELING 89

The begin − end keywords:

Group several statements together.•
Cause the statements to be evaluated in sequentially (one at a time)•

Any timing within the sequential groups is relative to the previous statement.♦
Delays in the sequence accumulate (each delay is added to the previous delay)♦
Block finishes after the last statement in the block.♦

Example − sequential

1module sequential();
2
3reg a;
4
5initial begin
6 #10 a = 0;
7 #11 a = 1;
8 #12 a = 0;
9 #13 a = 1;

10 #14 $finish;
11end
12
13endmodule

Parallel Statement Groups

The fork − join keywords:

Group several statements together.•
Cause the statements to be evaluated in parallel (all at the same time).•

Timing within parallel group is absolute to the beginning of the group.♦
Block finishes after the last statement completes(Statement with high delay, it can
be the first statement in the block).

♦

Example − Parallel

1module parallel();
2
3reg a;
4
5initial
6fork

7 #10 a = 0;
8 #11 a = 1;
9 #12 a = 0;

10 #13 a = 1;
11 #14 $finish;

www.asic−world.com VERILOG BEHAVIORAL MODELING 90

12join
13
14endmodule

Example − Mixing "begin−end" and "fork − join"

1module fork_join();
2
3reg clk,reset,enable,data;
4
5initial begin
6 $display ("Starting simulation");
7 fork : FORK_VAL
8 #1 clk = 0;
9 #5 reset = 0;

10 #5 enable = 0;
11 #2 data = 0;
12 join

13 $display ("Terminating simulation");
14 #10 $finish;
15end
16
17endmodule

Blocking and Nonblocking assignment

Blocking assignments are executed in the order they are coded, Hence they are sequential. Since
they block the execution of next statment, till the current statement is excuted, they are called
blocking assignments. Assignment are made with "=" symbol. Example a = b;

Nonblocking assignements are executed in parallel. Since the execution of next statement is not
blocked due to execution of current statement, they are called nonblocking statement.
Assignement are made with "<=" symbol. Example a <= b;

Note : Correct way to spell nonblocking is nonblocking and not non−blocking.

Example − blocking and nonblocking

1module blocking_nonblocking();
2
3reg a,b,c,d;
4// Blocking Assignment
5initial begin
6 #10 a = 0;
7 #11 a = 1;
8 #12 a = 0;
9 #13 a = 1;

10end
11
12initial begin

www.asic−world.com VERILOG BEHAVIORAL MODELING 91

13 #10 b <= 0;
14 #11 b <= 1;
15 #12 b <= 0;
16 #13 b <= 1;
17end
18
19initial begin
20 c = #10 0;
21 c = #11 1;
22 c = #12 0;
23 c = #13 1;
24end
25
26initial begin
27 d <= #10 0;
28 d <= #11 1;
29 d <= #12 0;
30 d <= #13 1;
31end
32
33initial begin
34 $monitor(" TIME = %t A = %b B = %b C = %b D = %b" ,$time,a,b,c,d);
35 #50 $finish(1);
36end
37
38endmodule

Waveform

The Conditional Statement if−else
The if − else statement controls the execution of other statements, In programming language like
c, if − else controls the flow of program. When more then one statement needs to be executed for
a if conditions, then we need to use begin and end as seen in earlier examples.

Syntax : if
if (condition)
statements;

www.asic−world.com VERILOG BEHAVIORAL MODELING 92

Syntax : if−else
if (condition)
statements;
else
statements;

Syntax : nested if−else−if
if (condition)
statements;
else if (condition)
statements;
................
................
else
statements;

Example− simple if

1module simple_if();
2
3reg latch;
4wire enable,din;
5
6always @ (enable or din)
7if (enable) begin
8 latch <= din;
9end

10
11endmodule

Example− if−else

1module if_else();
2
3reg dff;
4wire clk,din,reset;
5
6always @ (posedge clk)
7if (reset) begin
8 dff <= 0;
9end else begin

10 dff <= din;
11end
12
13endmodule

Example− nested−if−else−if

www.asic−world.com VERILOG BEHAVIORAL MODELING 93

1module nested_if();
2
3reg [3:0] counter;
4wire clk,reset,enable, up_en, down_en;
5
6always @ (posedge clk)
7// If reset is asserted
8if (reset == 1'b0) begin
9 counter <= 4'b0000;

10 // If counter is enable and up count is mode
11end else if (enable == 1'b1 && up_en == 1'b1) begin
12 counter <= counter + 1'b1;
13 // If counter is enable and down count is mode
14end else if (enable == 1'b1 && down_en == 1'b1) begin
15 counter <= counter − 1'b0;
16 // If counting is disabled
17end else begin
18 counter <= counter; // Redundant code
19end
20
21endmodule

Parallel if−else

In the above example, the (enable == 1'b1 && up_en == 1'b1) is given highest pritority and
condition (enable == 1'b1 && down_en == 1'b1) is given lowest priority. We normally don't include
reset checking in priority as this does not falls in the combo logic input to the flip−flop as shown in
figure below.

So when we need priority logic, we use nexted if−else statments. On other end if we don't want to
implement priority logic, knowing that only one input is active at a time i.e. all inputs are mutually
exclusive, then we can write the code as shown below.

Its known fact that priority implementation takes more logic to implement then parallel
implementation. So if you know the inputs are mutually exclusive, then you can code the logic in
parallel if.

www.asic−world.com VERILOG BEHAVIORAL MODELING 94

1module parallel_if();
2
3reg [3:0] counter;
4wire clk,reset,enable, up_en, down_en;
5
6always @ (posedge clk)
7// If reset is asserted
8if (reset == 1'b0) begin
9 counter <= 4'b0000;

10
11end else begin
12 // If counter is enable and up count is mode
13 if (enable == 1'b1 && up_en == 1'b1) begin

14 counter <= counter + 1'b1;
15 end

16 // If counter is enable and down count is mode
17 if (enable == 1'b1 && down_en == 1'b1) begin

18 counter <= counter − 1'b0;
19 end

20end
21
22endmodule

The Case Statement
The case statement compares a expression to a series of cases and executes the statement or
statement group associated with the first matching case

case statement supports single or multiple statements.•
Group multiple statements using begin and end keywords.•

Synax of a case statement look as shown below.
case ()
< case1 > : < statement >
< case2 > : < statement >
.....
default : < statement >
endcase

Normal Case

Example− case

www.asic−world.com VERILOG BEHAVIORAL MODELING 95

1module mux (a,b,c,d,sel,y);
2input a, b, c, d;
3input [1:0] sel;
4output y;
5
6reg y;
7
8always @ (a or b or c or d or sel)
9case (sel)

10 0 : y = a;
11 1 : y = b;
12 2 : y = c;
13 3 : y = d;
14 default : $display("Error in SEL");
15endcase
16
17endmodule

Example− case without default

1module mux_without_default (a,b,c,d,sel,y);
2input a, b, c, d;
3input [1:0] sel;
4output y;
5
6reg y;
7
8always @ (a or b or c or d or sel)
9case (sel)

10 0 : y = a;
11 1 : y = b;
12 2 : y = c;
13 3 : y = d;
14 2'bxx,2'bx0,2'bx1,2'b0x,2'b1x,
15 2'bzz,2'bz0,2'bz1,2'b0z,2'b1z : $display("Error in SEL");
16endcase
17
18endmodule

Above example shows how to specifiy multiple case items as single case item.

The Verilog case statement does an identity comparison (like the === operator), One can use the
case statement to check for logic x and z values as shown in below example.

Example− case with x and z

www.asic−world.com VERILOG BEHAVIORAL MODELING 96

1module case_xz(enable);
2input enable;
3
4always @ (enable)
5case(enable)
6 1'bz : $display ("enable is floating");
7 1'bx : $display ("enable is unknown");
8 default : $display ("enable is %b" ,enable);
9endcase

10
11endmodule

The casez and casex statement

Special versions of the case statement allow the x ad z logic values to be used as "don't care"

casez : Treates z as the don't care.•
casex : Treates x and z as don't care.•

Example− casez

1module casez_example(opcode,a,b,c,out);
2input [3:0] opcode;
3input [1:0] a,b,c;
4output[1:0] out;
5reg [1:0] out;
6
7always @ (opcode or a or b or c)
8casez(opcode)
9 // Bit 0 is matched with "x"

10 4'b1zzx : out = a; // Don't care about lower 3:1 bits
11 4'b01?? : out = b; // The ? is same as z in a number
12 4'b001? : out = c;
13 default : $display ("Error xxxx does matches 0000");
14endcase
15
16endmodule

Example− casex

1module casex_example(opcode,a,b,c,out);
2input [3:0] opcode;
3input [1:0] a,b,c;
4output[1:0] out;
5reg [1:0] out;
6
7always @ (opcode or a or b or c)
8casex(opcode)
9 4'b1zzx : out = a; // Don't care 3:0 bits

10 4'b01?? : out = b; // The ? is same as z in a number
11 4'b001? : out = c;

www.asic−world.com VERILOG BEHAVIORAL MODELING 97

12 default : $display ("Error xxxx does matches 0000");
13endcase
14
15endmodule

Example− Comparing case, casex, casez

1module case_compare(sel);
2
3input sel;
4
5always @ (sel)
6case (sel)
7 1'b0 : $display("Normal : Logic 0 on sel");
8 1'b1 : $display("Normal : Logic 1 on sel");
9 1'bx : $display("Normal : Logic x on sel");

10 1'bz : $display("Normal : Logic z on sel");
11endcase
12
13always @ (sel)
14casex (sel)
15 1'b0 : $display("CASEX : Logic 0 on sel");
16 1'b1 : $display("CASEX : Logic 1 on sel");
17 1'bx : $display("CASEX : Logic x on sel");
18 1'bz : $display("CASEX : Logic z on sel");
19endcase
20
21always @ (sel)
22casez (sel)
23 1'b0 : $display("CASEZ : Logic 0 on sel");
24 1'b1 : $display("CASEZ : Logic 1 on sel");
25 1'bx : $display("CASEZ : Logic x on sel");
26 1'bz : $display("CASEZ : Logic z on sel");
27endcase
28
29endmodule

Looping Statements
Looping statements appear inside a procedural blocks only, Verilog has four looping statements
like any other programming language.

forever•
repeat•
while•
for•

The forever statement

www.asic−world.com VERILOG BEHAVIORAL MODELING 98

The forever loop executes continually, the loop never ends. Normally we use forever statement in
initial blocks.

syntax : forever < statement >

Once should be very careful in using a forever statement, if no timing construct is present in the
forever statement, simulation could hang. Below code is one such application, where timing
construct is included inside a forever statement.

Example − Free running clock generator

1module forever_example ();
2
3reg clk;
4
5initial begin
6 #1 clk = 0;
7 forever begin

8 #5 clk = !clk;
9 end

10end
11
12initial begin
13 $monitor ("Time = %d clk = %b" ,$time, clk);
14 #100 $finish;
15end
16
17endmodule

The repeat statement

The repeat loop executes statement fixed < number > of times.

syntax : repeat (< number >) < statement >

Example− repeat

1module repeat_example();
2reg [3:0] opcode;
3reg [15:0] data;
4reg temp;
5
6always @ (opcode or data)
7begin

8 if (opcode == 10) begin

9 // Perform rotate
10 repeat (8) begin

11 #1 temp = data[15];
12 data = data << 1;
13 data[0] = temp;

www.asic−world.com VERILOG BEHAVIORAL MODELING 99

14 end

15 end

16end
17// Simple test code
18initial begin
19 $display (" TEMP DATA");
20 $monitor (" %b %b " ,temp, data);
21 #1 data = 18'hF0;
22 #1 opcode = 10;
23 #10 opcode = 0;
24 #1 $finish;
25end
26
27endmodule

The while loop statement

The while loop executes as long as an evaluates as true. This is same as in any other
programming language.

syntax : while ()

Example− while

1module while_example();
2
3reg [5:0] loc;
4reg [7:0] data;
5
6always @ (data or loc)
7begin

8 loc = 0;
9 // If Data is 0, then loc is 32 (invalid value)

10 if (data == 0) begin

11 loc = 32;
12 end else begin

13 while (data[0] == 0) begin

14 loc = loc + 1;
15 data = data >> 1;
16 end

17 end

18 $display ("DATA = %b LOCATION = %d" ,data,loc);
19end
20
21initial begin
22 #1 data = 8'b11;
23 #1 data = 8'b100;
24 #1 data = 8'b1000;
25 #1 data = 8'b1000_0000;
26 #1 data = 8'b0;

www.asic−world.com VERILOG BEHAVIORAL MODELING 100

27 #1 $finish;
28end
29
30endmodule

The for loop statement

The for loop is same as the for loop used in any other programming language.

Executes an < initial assignment > once at the start of the loop.•
Executes the loop as long as an < expression > evaluates as true.•
Executes a at the end of each pass through the loop.•

syntax : for (< initial assignment >; < expression >, < step assignment >) < statement >
Note : verilog does not have ++ operator as in the case of C language.

Example− while

1module for_example();
2
3integer i;
4reg [7:0] ram [0:255];
5
6initial begin
7 for (i=0;i<=63;i=i+1) begin

8 #1 $display(" Address = %d Data = %h" ,i,ram[i]);
9 ram[i] <= 0; // Initialize the RAM with 0

10 #1 $display(" Address = %d Data = %h" ,i,ram[i]);
11 end

12 #1 $finish;
13end
14
15endmodule

Continuous Assignment Statements
Continuous assignment statements drives nets (wire data type). They represent structural
connections.

They are used for modeling Tri−State buffers.•
They can be used for modeling combinational logic.•
They are outside the procedural blocks (always and initial blocks).•
The continuous assign overrides any procedural assignments.•
The left−hand side of a continuous assignment must be net data type.•

syntax : assign (strength, strength) #(delay) net = expression;

www.asic−world.com VERILOG BEHAVIORAL MODELING 101

Example − One bit Adder

1module adder_using_assign ();
2reg a, b;
3wire sum, carry;
4
5assign #5 {carry,sum} = a+b;
6
7initial begin
8 $monitor (" A = %b B = %b CARRY = %b SUM = %b" ,a,b,carry,sum);
9 #10 a = 0;

10 b = 0;
11 #10 a = 1;
12 #10 b = 1;
13 #10 a = 0;
14 #10 b = 0;
15 #10 $finish;
16end
17
18endmodule

Example − Tri−state buffer

1module tri_buf_using_assign();
2reg data_in, enable;
3wire pad;
4
5assign pad = (enable) ? data_in : 1'bz;
6
7initial begin
8 $monitor ("ENABLE = %b DATA : %b PAD %b" ,enable, data_in,pad);
9 #1 enable = 0;

10 #1 data_in = 1;
11 #1 enable = 1;
12 #1 data_in = 0;
13 #1 enable = 0;
14 #1 $finish;
15end
16
17endmodule

Propagation Delay
Continuous Assignments may have a delay specified, Only one delay for all transitions may be
specified. A minimum:typical:maximum delay range may be specified.

Example − Tri−state buffer

www.asic−world.com VERILOG BEHAVIORAL MODELING 102

1module tri_buf_using_assign_delays();
2reg data_in, enable;
3wire pad;
4
5assign #(1:2:3) pad = (enable) ? data_in : 1'bz;
6
7initial begin
8 $monitor ("ENABLE = %b DATA : %b PAD %b" ,enable, data_in,pad);
9 #10 enable = 0;

10 #10 data_in = 1;
11 #10 enable = 1;
12 #10 data_in = 0;
13 #10 enable = 0;
14 #10 $finish;
15end
16
17endmodule

Procedural Block Control
Procedural blocks become active at simulation time zero, Use level sensitive even controls to
control the execution of a procedure.

1module dlatch_using_always();
2reg q;
3
4reg d, enable;
5
6always @ (d or enable)
7if (enable) begin
8 q = d;
9end

10
11initial begin
12 $monitor (" ENABLE = %b D = %b Q = %b" ,enable,d,q);
13 #1 enable = 0;
14 #1 d = 1;
15 #1 enable = 1;
16 #1 d = 0;
17 #1 d = 1;
18 #1 d = 0;
19 #1 enable = 0;
20 #10 $finish;
21end
22
23endmodule

An event sensitive delay at the begining of a procedure, any change in either d or enable satisfies
the even control and allows the execution of the statements in the procedure. The procedure is
sensitive to any change in d or enable.

www.asic−world.com VERILOG BEHAVIORAL MODELING 103

Combo Logic using Procedural Coding

To model combinational logic, a procedure block must be sensitive to any change on the input.
There is one important rule that needs to be followed while modelling combinational logic. If you
use conditional checking using "if", then you need to mention the "else" part. Missing the else part
results in latch. If you don't like typing the else part, then you must initilize all the variables of that
combo block to zero as soon as it enters.

Example − One bit Adder

1module adder_using_always ();
2reg a, b;
3reg sum, carry;
4
5always @ (a or b)
6begin

7 {carry,sum} = a + b;
8end
9

10initial begin
11 $monitor (" A = %b B = %b CARRY = %b SUM = %b" ,a,b,carry,sum);
12 #10 a = 0;
13 b = 0;
14 #10 a = 1;
15 #10 b = 1;
16 #10 a = 0;
17 #10 b = 0;
18 #10 $finish;
19end
20
21endmodule

The statements within the procedural block work with entire vectors at a time.

Example − 4−bit Adder

1module adder_4_bit_using_always ();
2reg[3:0] a, b;
3reg [3:0] sum;
4reg carry;
5
6always @ (a or b)
7begin

8 {carry,sum} = a + b;
9end

10
11initial begin
12 $monitor (" A = %b B = %b CARRY = %b SUM = %b" ,a,b,carry,sum);
13 #10 a = 8;
14 b = 7;
15 #10 a = 10;
16 #10 b = 15;

www.asic−world.com VERILOG BEHAVIORAL MODELING 104

17 #10 a = 0;
18 #10 b = 0;
19 #10 $finish;
20end
21
22endmodule

Example − Ways to avoid Latches − Cover all conditions

1module avoid_latch_else ();
2
3reg q;
4reg enable, d;
5
6always @ (enable or d)
7if (enable) begin
8 q = d;
9end else begin

10 q = 0;
11end
12
13initial begin
14 $monitor (" ENABLE = %b D = %b Q = %b" ,enable,d,q);
15 #1 enable = 0;
16 #1 d = 0;
17 #1 enable = 1;
18 #1 d = 1;
19 #1 d = 0;
20 #1 d = 1;
21 #1 d = 0;
22 #1 d = 1;
23 #1 enable = 0;
24 #1 $finish;
25end
26
27endmodule

Example − Ways to avoid Latches − Init the variables to zero

1module avoid_latch_init ();
2
3reg q;
4reg enable, d;
5
6always @ (enable or d)
7begin

8 q = 0;
9 if (enable) begin

10 q = d;
11 end

12end
13
14initial begin

www.asic−world.com VERILOG BEHAVIORAL MODELING 105

15 $monitor (" ENABLE = %b D = %b Q = %b" ,enable,d,q);
16 #1 enable = 0;
17 #1 d = 0;
18 #1 enable = 1;
19 #1 d = 1;
20 #1 d = 0;
21 #1 d = 1;
22 #1 d = 0;
23 #1 d = 1;
24 #1 enable = 0;
25 #1 $finish;
26end
27
28endmodule

Sequential Logic using Procedural Coding

To model sequential logic, a procedure block must be sensitive to positive edge or negative edge
of clock. To model asychronous reset, procedure block must be sensitive to both clock and reset.
All the assigments to sequential logic should be made throught nonblocking assignement.

Sometimes it tempting to have multiple edge triggering variables in the sensitive list, this is fine for
simulation. But for synthesis this does not make sense, as in real life, flip−flop can have only one
clock, one reset and one preset. (i.e posedge clk or posedge reset or posedge preset)

One of the common mistake the new beginner makes is using clock as the enable input to
flip−flop. This is fine for simulation, but for synthesis, this is not right.

Example − Bad coding − Using two clocks

1module wrong_seq();
2
3reg q;
4reg clk1, clk2, d1, d2;
5
6always @ (posedge clk1 or posedge clk2)
7if (clk1) begin
8 q <= d1;
9end else if (clk2) begin

10 q <= d2;
11end
12
13initial begin
14 $monitor ("CLK1 = %b CLK2 = %b D1 = %b D2 %b Q = %b" , clk1, clk2, d1, d2, q);
15 clk1 = 0;
16 clk2 = 0;
17 d1 = 0;
18 d2 = 1;
19 #10 $finish;
20end
21

www.asic−world.com VERILOG BEHAVIORAL MODELING 106

22always
23#1 clk1 = ~clk1;
24
25always
26#1.9 clk2 = ~clk2;
27
28endmodule

Example − D Flip−flop with async reset and async preset

1module dff_async_reset_async_preset();
2
3reg clk,reset,preset,d;
4reg q;
5
6always @ (posedge clk or posedge reset or posedge preset)
7if (reset) begin
8 q <= 0;
9end else if (preset) begin

10 q <= 1;
11end else begin
12 q <= d;
13end
14
15// Testbench code here
16initial begin
17 $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b" ,clk,reset,preset,d,q);
18 clk = 0;
19 #1 reset = 0;
20 preset = 0;
21 d = 0;
22 #1 reset = 1;
23 #2 reset = 0;
24 #2 preset = 1;
25 #2 preset = 0;
26 repeat (4) begin

27 #2 d = ~d;
28 end

29 #2 $finish;
30end
31
32always
33#1 clk = ~clk;
34
35endmodule

Example − D Flip−flop with sync reset and sync preset

www.asic−world.com VERILOG BEHAVIORAL MODELING 107

1module dff_sync_reset_sync_preset();
2
3reg clk,reset,preset,d;
4reg q;
5
6always @ (posedge clk)
7if (reset) begin
8 q <= 0;
9end else if (preset) begin

10 q <= 1;
11end else begin
12 q <= d;
13end
14
15// Testbench code here
16initial begin
17 $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b" ,clk,reset,preset,d,q);
18 clk = 0;
19 #1 reset = 0;
20 preset = 0;
21 d = 0;
22 #1 reset = 1;
23 #2 reset = 0;
24 #2 preset = 1;
25 #2 preset = 0;
26 repeat (4) begin

27 #2 d = ~d;
28 end

29 #2 $finish;
30end
31
32always
33#1 clk = ~clk;
34
35endmodule

A procedure can't trigger itself

One cannot trigger the block with the variable that block assigns value or drive's.

1module trigger_itself();
2
3reg clk;
4
5always @ (clk)
6#5 clk = !clk;
7
8// Testbench code here
9initial begin

10 $monitor("TIME = %d CLK = %b" ,$time,clk);
11 clk = 0;
12 #500 $display("TIME = %d CLK = %b" ,$time,clk);
13 $finish;
14end
15

www.asic−world.com VERILOG BEHAVIORAL MODELING 108

16endmodule

Procedural Block Concurrency

If we have multiple always blocks inside one module, then all the blocks (i.e. all the always blocks
and initial blocks) will start executing at time 0 and will continue to execute concurrently.
Sometimes this is leads to race condition, if coding is not done proper.

1module multiple_blocks ();
2reg a,b;
3reg c,d;
4reg clk,reset;
5// Combo Logic
6always @ (c)
7begin

8 a = c;
9end

10// Seq Logic
11always @ (posedge clk)
12if (reset) begin
13 b <= 0;
14end else begin
15 b <= a & d;
16end
17
18// Testbench code here
19initial begin
20 $monitor("TIME = %d CLK = %b C = %b D = %b A = %b B = %b" ,$time, clk,c,d,a,b);
21 clk = 0;
22 reset = 0;
23 c = 0;
24 d = 0;
25 #2 reset = 1;
26 #2 reset = 0;
27 #2 c = 1;
28 #2 d = 1;
29 #2 c = 0;
30 #5 $finish;
31end
32// Clock generator
33always
34#1 clk = ~clk;
35
36endmodule

Race condition

www.asic−world.com VERILOG BEHAVIORAL MODELING 109

1module race_condition();
2reg b;
3
4initial begin
5 b = 0;
6end
7
8initial begin
9 b = 1;

10end
11
12endmodule

In the above code it is difficult to say the value of b, as both the blocks are suppose to execute at
same time. In Verilog if care is not taken, race condition is something that occurs very often.

Named Blocks

Blocks can be named by adding : block_name after the keyword begin. named block can be
disabled using disable statement.

Example − Named Blocks

1// This code find the lowest bit set
2module named_block_disable();
3
4reg [31:0] bit_detect;
5reg [5:0] bit_position;
6integer i;
7
8always @ (bit_detect)
9begin : BIT_DETECT

10 for (i = 0; i < 32 ; i = i + 1) begin

11 // If bit is set, latch the bit position
12 // Disable the execution of the block
13 if (bit_detect[i] == 1) begin

14 bit_position = i;
15 disable BIT_DETECT;
16 end else begin

17 bit_position = 32;
18 end

19 end

20end
21
22// Testbench code here
23initial begin
24 $monitor(" INPUT = %b MIN_POSITION = %d" , bit_detect, bit_position);
25 #1 bit_detect = 32'h1000_1000;
26 #1 bit_detect = 32'h1100_0000;
27 #1 bit_detect = 32'h1000_1010;
28 #10 $finish;
29end

www.asic−world.com VERILOG BEHAVIORAL MODELING 110

30
31endmodule

In above example, BIT_DETECT is the named block and it is disabled when ever the bit position is
detected.

www.asic−world.com VERILOG BEHAVIORAL MODELING 111

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com VERILOG BEHAVIORAL MODELING 112

PROCEDURAL TIMING CONTROL
CHAPTER 10

www.asic−world.com PROCEDURAL TIMING CONTROL 113

Procedural blocks and timing controls.

Delays controls.•
Edge−Sensitive Event controls•
Level−Sensitive Event controls−Wait statements•
Named Events•

Delay Controls

Delays the execution of a procedural statement by specific simulation time.
#< time > < statement >;

Example − clk_gen

1module clk_gen ();
2
3reg clk, reset;
4
5initial begin
6 $monitor (" RESET = %b CLOCK = %b" ,reset,clk);
7 clk = 0;
8 reset = 0;
9 #2 reset = 1;

10 #5 reset = 0;
11 #10 $finish;
12end
13
14always
15#1 clk = !clk;
16
17endmodule

Waveform

Edge sensitive Event Controls

Delays execution of the next statement until the specified transition on a signal.

syntax : @ (< posedge >|< negedge > signal) < statement >;

www.asic−world.com PROCEDURAL TIMING CONTROL 114

Example − Edge Wait

1module edge_wait_example();
2
3reg enable, clk, trigger;
4
5always @ (posedge enable)
6begin

7 trigger = 0;
8 // Wait for 5 clock cycles
9 repeat (5) begin

10 @ (posedge clk) ;
11 end

12 trigger = 1;
13end
14
15//Testbench code here
16initial begin
17 $monitor ("TIME : %d CLK : %b ENABLE : %b TRIGGER : %b" ,$time, clk,enable,trigger);
18 clk = 0;
19 enable = 0;
20 #5 enable = 1;
21 #1 enable = 0;
22 #10 enable = 1;
23 #1 enable = 0;
24 #10 $finish;
25end
26
27always
28#1 clk = ~clk;
29
30endmodule

Waveform

www.asic−world.com PROCEDURAL TIMING CONTROL 115

Level−Sensitive Even Controls (Wait statements)

Delays execution of the next statement until the evaluates as true
syntax : wait () ;

Example − Level Wait

1module wait_example();
2
3reg mem_read, data_ready;
4reg [7:0] data_bus, data;
5
6always @ (mem_read or data_bus or data_ready)
7begin

8 data = 0;
9 while (mem_read == 1'b1) begin

10 // #1 is very important to avoid infinite loop
11 wait (data_ready == 1) #1 data = data_bus;
12 end

13end
14
15// Testbench Code here
16initial begin
17 $monitor ("%d READ = %b READY = %b DATA = %b" , $time, mem_read, data_ready, data);
18 data_bus = 0;
19 mem_read = 0;
20 data_ready = 0;
21 #10 data_bus = 8'hDE;
22 #10 mem_read = 1;
23 #20 data_ready = 1;
24 #1 mem_read = 1;
25 #1 data_ready = 0;
26 #10 data_bus = 8'hAD;
27 #10 mem_read = 1;
28 #20 data_ready = 1;
29 #1 mem_read = 1;
30 #1 data_ready = 0;
31 #10 $finish;
32end
33
34endmodule

Intra−Assignment Timing Controls

Intra−assignment controls evaluate the right side expression right always and assigns the result
after the delay or event control.

In non−intra−assignment controls (delay or event control on the left side) right side expression
evaluated after delay or event control.

Example − Intra−Assignment

www.asic−world.com PROCEDURAL TIMING CONTROL 116

1module intra_assign();
2
3reg a, b;
4
5initial begin
6 $monitor("TIME = %d A = %b B = %b" ,$time, a , b);
7 a = 1;
8 b = 0;
9 a = #10 0;

10 b = a;
11 #20 $display("TIME = %d A = %b B = %b" ,$time, a , b);
12 $finish;
13end
14
15endmodule

Waveform

Modeling Combo Logic with Continuous Assignments

Whenever any signal changes on the right hand side, the entire right−hand side is re−evaluated
and the result is assigned to the left hand side

Example − Tri−state Buffer

1module tri_buf_using_assign();
2reg data_in, enable;
3wire pad;
4
5assign pad = (enable) ? data_in : 1'bz;
6
7initial begin
8 $monitor ("ENABLE = %b DATA : %b PAD %b" ,enable, data_in,pad);
9 #1 enable = 0;

10 #1 data_in = 1;
11 #1 enable = 1;
12 #1 data_in = 0;
13 #1 enable = 0;
14 #1 $finish;
15end
16
17endmodule

www.asic−world.com PROCEDURAL TIMING CONTROL 117

Waveform

Example − Mux

1module mux_using_assign();
2reg data_in_0, data_in_1;
3wire data_out;
4reg sel;
5
6assign data_out = (sel) ? data_in_1 : data_in_0;
7
8// Testbench code here
9initial begin

10
$monitor("TIME = %d SEL = %b DATA0 = %b DATA1 = %b OUT = %b"
,$time,sel,data_in_0,data_in_1,data_out);

11 data_in_0 = 0;
12 data_in_1 = 0;
13 sel = 0;
14 #10 sel = 1;
15 #10 $finish;
16end
17
18// Toggel data_in_0 at #1
19always
20#1 data_in_0 = ~data_in_0;
21
22// Toggel data_in_1 at %1.5
23always
24#1.3 data_in_1 = ~data_in_1;
25
26endmodule

Waveform

www.asic−world.com PROCEDURAL TIMING CONTROL 118

www.asic−world.com PROCEDURAL TIMING CONTROL 119

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com PROCEDURAL TIMING CONTROL 120

TASK AND FUNCTIONS
CHAPTER 11

www.asic−world.com TASK AND FUNCTIONS 121

Task
Tasks are used in all programming languages, generally known as Procedures or sub routines.
Many lines of code are enclosed in task....end task brackets. Data is passed to the task, the
processing done, and the result returned to a specified value. They have to be specifically called,
with data in and outs, rather than just wired in to the general netlist. Included in the main body of
code they can be called many times, reducing code repetition.

task are defined in the module in which they are used. it is possible to define task in
separate file and use compile directive 'include to include the task in the file which
instantiates the task.

•

task can include timing delays, like posedge, negedge, # delay and wait.•
task can have any number of inputs and outputs.•
The variables declared within the task are local to that task. The order of declaration within
the task defines how the variables passed to the task by the caller are used.

•

task can take, drive and source global variables, when no local variables are used. When
local variables are used, it basically assigned output only at the end of task execution.

•

task can call another task or function.•
task can be used for modeling both combinational and sequential logic.•
A task must be specifically called with a statement, it cannot be used within an expression
as a function can.

•

Syntax

task begins with keyword task and end's with keyword endtask•
input and output are declared after the keyword task.•
local variables are declared after input and output declaration.•

Example − Simple Task

1module simple_task();
2
3task convert;
4input [7:0] temp_in;
5output [7:0] temp_out;
6begin

7 temp_out = (9/5) *(temp_in + 32)
8end
9endtask

10
11endmodule

Example − Task using Global Variables

www.asic−world.com TASK AND FUNCTIONS 122

1module task_global();
2
3reg [7:0] temp_out;
4reg [7:0] temp_in;
5
6task convert;
7begin

8 temp_out = (9/5) *(temp_in + 32);
9end

10endtask
11
12endmodule

Calling a Task

Lets assume that task in example 1 is stored in a file called mytask.v. Advantage of coding task in
separate file is that, it can be used in multiple module's.

1module task_calling (temp_a, temp_b, temp_c, temp_d);
2input [7:0] temp_a, temp_c;
3output [7:0] temp_b, temp_d;
4reg [7:0] temp_b, temp_d;
5`include "mytask.v"
6
7always @ (temp_a)
8begin

9 convert (temp_a, temp_b);
10end
11
12always @ (temp_c)
13begin

14 convert (temp_c, temp_d);
15end
16
17endmodule

Example − CPU Write / Read Task

Below is the waveform used for writing into memory and reading from memory. We make
assumption that there is need to use this interface from multiple agents. So we write the read/write
as tasks.

www.asic−world.com TASK AND FUNCTIONS 123

1module bus_wr_rd_task();
2
3reg clk,rd,wr,ce;
4reg [7:0] addr,data_wr,data_rd;
5reg [7:0] read_data;
6
7initial begin
8 clk = 0;
9 read_data = 0;

10 rd = 0;
11 wr = 0;
12 ce = 0;
13 addr = 0;
14 data_wr = 0;
15 data_rd = 0;
16 // Call the write and read tasks here
17 #1 cpu_write(8'h11,8'hAA);
18 #1 cpu_read(8'h11,read_data);
19 #1 cpu_write(8'h12,8'hAB);
20 #1 cpu_read(8'h12,read_data);
21 #1 cpu_write(8'h13,8'h0A);
22 #1 cpu_read(8'h13,read_data);
23 #100 $finish;
24end
25// Clock Generator
26always
27#1 clk = ~clk;
28// CPU Read Task
29task cpu_read;
30input [7:0] address;
31output [7:0] data;
32begin

33 $display ("CPU Read task with address : %h" ,address);
34 $display (" Driving CE, RD and ADDRESS on to bus");
35 @ (posedge clk);
36 addr = address;
37 ce = 1;
38 rd = 1;
39 @ (negedge clk);
40 data = data_rd;
41 @ (posedge clk);
42 addr = 0;
43 ce = 0;
44 rd = 0;
45 $display (" CPU Read data : %h" ,data);
46 $display ("======================");
47end
48endtask
49// CU Write Task
50task cpu_write;
51input [7:0] address;
52input [7:0] data;
53begin

54 $display ("CPU Write task with address : %h Data : %h" ,address,data);
55 $display (" Driving CE, WR, WR data and ADDRESS on to bus");

www.asic−world.com TASK AND FUNCTIONS 124

56 @ (posedge clk);
57 addr = address;
58 ce = 1;
59 wr = 1;
60 data_wr = data;
61 @ (posedge clk);
62 addr = 0;
63 ce = 0;
64 wr = 0;
65 $display ("======================");
66end
67endtask
68
69// Memory model for checking tasks
70reg [7:0] mem [0:255];
71
72always @ (addr or ce or rd or wr or data_wr)
73if (ce) begin
74 if (wr) begin

75 mem[addr] = data_wr;
76 end

77 if (rd) begin

78 data_rd = mem[addr];
79 end

80end
81
82endmodule

Function
A Verilog HDL function is same as task, with very little difference, like function cannot drive more
then one output, can not contain delays.

function are defined in the module in which they are used. it is possible to define function in
separate file and use compile directive 'include to include the function in the file which
instantiates the task.

•

function can not include timing delays, like posedge, negedge, # delay. Which means
that function should be executed in "zero" time delay.

•

function can have any number of inputs and but only one output.•
The variables declared within the function are local to that function. The order of
declaration within the function defines how the variables passed to the function by the
caller are used.

•

function can take drive and source global variables, when no local variables are used.
When local variables are used, it basically assigned output only at the end of function
execution.

•

function can be used for modeling combinational logic.•
function can call other functions, but can not call task.•

Syntax

www.asic−world.com TASK AND FUNCTIONS 125

function begins with keyword function and end's with keyword endfunction•
input are declared after the keyword function.•

Example − Simple Function

1module simple_function();
2
3function myfunction;
4input a, b, c, d;
5begin

6 myfunction = ((a+b) + (c−d));
7end
8endfunction
9

10endmodule

Example − Calling a Function

1module function_calling(a, b, c, d, e, f);
2
3input a, b, c, d, e ;
4output f;
5wire f;
6`include "myfunction.v"
7
8assign f = (myfunction (a,b,c,d)) ? e :0;
9

10endmodule

www.asic−world.com TASK AND FUNCTIONS 126

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com TASK AND FUNCTIONS 127

SYSTEM TASK AND FUNCTION
CHAPTER 12

www.asic−world.com SYSTEM TASK AND FUNCTION 128

Introduction
There are tasks and functions that are used to generate input and output during simulation. Their
names begin with a dollar sign ($). The synthesis tools parse and ignore system functions, and
hence can be included even in synthesizable models.

$display, $strobe, $monitor

These commands have the same syntax, and display text on the screen during simulation. They
are much less convenient than waveform display tools like GTKWave. or Undertow. $display and
$strobe display once every time they are executed, whereas $monitor displays every time one of
its parameters changes. The difference between $display and $strobe is that $strobe displays the
parameters at the very end of the current simulation time unit rather than exactly where it is
executed. The format string is like that in C/C++, and may contain format characters. Format
characters include %d (decimal), %h (hexadecimal), %b (binary), %c (character), %s (string) and
%t (time), %m (hierarchy level). %5d, %5b etc. would give exactly 5 spaces for the number instead
of the space needed. Append b, h, o to the task name to change default format to binary, octal or
hexadecimal.

Syntax

$display ("format_string", par_1, par_2, ...);•
$strobe ("format_string", par_1, par_2, ...);•
$monitor ("format_string", par_1, par_2, ...);•
$displayb (as above but defaults to binary..);•
$strobeh (as above but defaults to hex..);•
$monitoro (as above but defaults to octal..);•

$time, $stime, $realtime

These return the current simulation time as a 64−bit integer, a 32−bit integer, and a real number,
respectively.

$reset, $stop, $finish

$reset resets the simulation back to time 0; $stop halts the simulator and puts it in the interactive
mode where the user can enter commands; $finish exits the simulator back to the operating
system.

$scope, $showscope

$scope(hierarchy_name) sets the current hierarchical scope to hierarchy_name. $showscopes(n)
lists all modules, tasks and block names in (and below, if n is set to 1) the current scope.

$random

www.asic−world.com SYSTEM TASK AND FUNCTION 129

$random generates a random integer every time it is called. If the sequence is to be repeatable,
the first time one invokes random give it a numerical argument (a seed). Otherwise the seed is
derived from the computer clock.

$dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall

These can dump variable changes to a simulation viewer like Debussy. The dump files are
capable of dumping all the variables in a simulation. This is convenient for debugging, but can be
very slow.

Syntax

$dumpfile("filename.dmp")•
$dumpvar dumps all variables in the design.•
$dumpvar(1, top) dumps all the variables in module top and below, but not modules
instantiated in top.

•

$dumpvar(2, top) dumps all the variables in module top and 1 level below.•
$dumpvar(n, top) dumps all the variables in module top and n−1 levels below.•
$dumpvar(0, top) dumps all the variables in module top and all level below.•
$dumpon initiates the dump.•
$dumpoff stop dumping.•

$fopen, $fdisplay, $fstrobe $fmonitor and $fwrite

These commands write more selectively to files.

$fopen opens an output file and gives the open file a handle for use by the other
commands.

•

$fclose closes the file and lets other programs access it.•
$fdisplay and $fwrite write formatted data to a file whenever they are executed. They are
the same except $fdisplay inserts a new line after every execution and $write does not.

•

$strobe also writes to a file when executed, but it waits until all other operations in the time
step are complete before writing. Thus initial #1 a=1; b=0; $fstrobe(hand1, a,b); b=1; will
write write 1 1 for a and b.

•

$monitor writes to a file whenever any one of its arguments changes.•

Syntax

handle1=$fopen("filenam1.suffix")•
handle2=$fopen("filenam2.suffix")•
$fstrobe(handle1, format, variable list) //strobe data into filenam1.suffix•
$fdisplay(handle2, format, variable list) //write data into filenam2.suffix•
$fwrite(handle2, format, variable list) //write data into filenam2.suffix all on one line. Put in
the format string where a new line is desired.

•

www.asic−world.com SYSTEM TASK AND FUNCTION 130

www.asic−world.com SYSTEM TASK AND FUNCTION 131

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com SYSTEM TASK AND FUNCTION 132

ART OF WRITING TESTBENCHES
CHAPTER 13

www.asic−world.com ART OF WRITING TESTBENCHES 133

Introduction
Writing testbench is as complex as writing the RTL code itself. This days ASIC's are getting more
and more complex and thus the challenge to verify this complex ASIC. Typically 60−70% of time in
any ASIC is spent on verification/validation/testing. Even though above facts are well know to most
of the ASIC engineers, but still engineers think that there is no glory in verification.

I have picked up few examples from the VLSI classes that I used to teach during 1999−2001,
when I was in Chennai. Please feel free to give your feedback on how to improve below tutorial.

Before you Start

For writing testbench it is important to have the design specification of "design under test" or
simply DUT. Specs need to be understood clearly and test plan is made, which basically
documents the test bench architecture and the test scenarios (test cases) in detail.

Example − Counter
Lets assume that we have to verify a simple 4−bit up counter, which increments its count when
ever enable is high and resets to zero, when reset is asserted high. Reset is synchronous to clock.

Code for Counter

1//−−−
2// Design Name : counter
3// File Name : counter.v
4// Function : 4 bit up counter
5// Coder : Deepak
6//−−−
7module counter (clk, reset, enable, count);
8input clk, reset, enable;
9output [3:0] count;

10reg [3:0] count;
11
12always @ (posedge clk)
13if (reset == 1'b1) begin
14 count <= 0;
15end else if (enable == 1'b1) begin
16 count <= count + 1;
17end
18
19endmodule

Test Plan

We will write self checking test bench, but we will do this in steps to help you understand the
concept of writing automated test benches. Our testbench env will look something like shown in
below figure.

www.asic−world.com ART OF WRITING TESTBENCHES 134

DUT is instantiated in testbench, and testbench will contain a clock generator, reset generator,
enable logic generator, compare logic, which basically calculate the expected count value of
counter and compare the output of counter with calculated value.

Test Cases

Reset Test : We can start with reset deasserted, followed by asserting reset for few clock
ticks and deasserting the reset, See if counter sets its output to zero.

•

Enable Test : Assert/deassert enable after reset is applied.•
Random Assert/deassert of enable and reset.•

We can add some more test cases, but then we are not here to test the counter, but to learn how
to write test bench.

Writing TestBench
First step of any testbench creation is to creating a dummy template which basically declares
inputs to DUT as reg and outputs from DUT as wire, instantiate the DUT as shown in code below.
Note there is no port list for the test bench.

Test Bench

1module counter_tb;
2reg clk, reset, enable;
3wire [3:0] count;
4
5counter U0 (
6.clk (clk),
7.reset (reset),
8.enable (enable),
9.count (count)

10);
11

www.asic−world.com ART OF WRITING TESTBENCHES 135

12endmodule

Next step would be to add clock generator logic, this is straight forward, as we know how to
generate clock. Before we add clock generator we need to drive all the inputs to DUT to some
know state as shown in code below.

Test Bench with Clock gen

1module counter_tb;
2reg clk, reset, enable;
3wire [3:0] count;
4
5counter U0 (
6.clk (clk),
7.reset (reset),
8.enable (enable),
9.count (count)

10);
11
12initial
13begin

14 clk = 0;
15 reset = 0;
16 enable = 0;
17end
18
19always
20#5 clk = !clk;
21
22endmodule

Initial block in verilog is executed only once, thus simulator sets the value of clk, reset and enable
to 0, which by looking at the counter code (of course you will be referring to the the DUT specs)
could be found that driving 0 makes all this signals disabled.

There are many ways to generate clock, one could use forever loop inside a initial block as an
alternate to above code. You could add parameter or use `define to control the clock frequency.
You may writing complex clock generator, where we could introduce PPM (Parts per million, clock
width drift), control the duty cycle. All the above depends on the specs of the DUT and creativity of
a "Test Bench Designer".

At this point, you would like test if the testbench is generating the clock correctly, well you can
compile with the Veriwell command line compiler found here. You need to give command line
option as shown below. (Please let me know if this is illegal to have this compiler local to this
website).

C:\www.asic−world.com\veridos counter.v counter_tb.v

www.asic−world.com ART OF WRITING TESTBENCHES 136

Of course it is a very good idea to keep file names same as module name. Ok, coming back to
compiling, you will see that simulator does not come out, or print anything on screen or does it
dump any waveform. Thus we need to add support for all the above as shown in code below.

Test Bench continues...

1module counter_tb;
2reg clk, reset, enable;
3wire [3:0] count;
4
5counter U0 (
6.clk (clk),
7.reset (reset),
8.enable (enable),
9.count (count)

10);
11
12initial begin
13 clk = 0;
14 reset = 0;
15 enable = 0;
16end
17
18always
19#5 clk = !clk;
20
21initial begin
22 $dumpfile ("counter.vcd");
23 $dumpvars;
24end
25
26initial begin
27 $display("\t\ttime,\tclk,\treset,\tenable,\tcount");
28 $monitor("%d,\t%b,\t%b,\t%b,\t%d" ,$time, clk,reset,enable,count);
29end
30
31initial
32#100 $finish;
33
34//Rest of testbench code after this line
35
36endmodule

$dumpfile is used for specifying the file that simulator will use to store the waveform, that can be
used later to view using waveform viewer. (Please refer to tools section for freeware version of
viewers.) $dumpvars basically instructs the Verilog compiler to start dumping all the signals to
"counter.vcd".

$display is used for printing text or variables to stdout (screen), \t is for inserting tab. Syntax is
same as printf. Second line $monitor is bit different, $monitor keeps track of changes to the
variables that are in the list (clk, reset, enable, count). When ever anyone of them changes, it
prints their value, in the respective radix specified.

www.asic−world.com ART OF WRITING TESTBENCHES 137

$finish is used for terminating simulation after #100 time units (note, all the initial, always blocks
start execution at time 0)

Now that we have written basic skeleton, lets compile and see what we have just coded. Output of
the simulator is shown below.

 C:\www.asic−world.com>veridos counter.v counter_tb.v
 VeriWell for Win32 HDL Version 2.1.4 Fri Jan 17 21:33:25 2003

 This is a free version of the VeriWell for Win32 Simulator
 Distribute this freely; call 1−800−VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1993−97 Wellspring Solutions, Inc.
 All rights reserved

 Memory Available: 0
 Entering Phase I...
 Compiling source file : counter.v
 Compiling source file : counter_tb.v
 The size of this model is [2%, 5%] of the capacity of the free version

 Entering Phase II...
 Entering Phase III...
 No errors in compilation
 Top−level modules:
 counter_tb

 time clk, reset, enable, count
 0, 0, 0, 0, x
 5, 1, 0, 0, x
 10, 0, 0, 0, x
 15, 1, 0, 0, x
 20, 0, 0, 0, x
 25, 1, 0, 0, x
 30, 0, 0, 0, x
 35, 1, 0, 0, x
 40, 0, 0, 0, x
 45, 1, 0, 0, x
 50, 0, 0, 0, x
 55, 1, 0, 0, x
 60, 0, 0, 0, x
 65, 1, 0, 0, x
 70, 0, 0, 0, x
 75, 1, 0, 0, x
 80, 0, 0, 0, x
 85, 1, 0, 0, x
 90, 0, 0, 0, x
 95, 1, 0, 0, x

 Exiting VeriWell for Win32 at time 100
 0 Errors, 0 Warnings, Memory Used: 0
 Compile time = 0.0 Load time = 0.0 Simulation time = 0.1

 Normal exit
 Thank you for using VeriWell for Win32

www.asic−world.com ART OF WRITING TESTBENCHES 138

Adding Reset Logic

Once we have the basic logic to allow us to see what our testbench is doing, we can next add the
reset logic, If we look at the testcases, we see that we had added a constraint that it should be
possible to activate reset anytime during simulation. To achieve this we have many approaches,
but I am going to teach something that will go long way. There is something called 'events' in
Verilog, events can be triggered, and also monitored to see, if a event has occurred.

Lets code our reset logic in such a way that it waits for the trigger event "reset_trigger" to happen,
when this event happens, reset logic asserts reset at negative edge of clock and de−asserts on
next negative edge as shown in code below. Also after de−asserting the reset, reset logic triggers
another event called "reset_done_trigger". This trigger event can then be used at some where else
in test bench to sync up.

Code of reset logic

1event reset_trigger;
2event reset_done_trigger;
3
4initial begin
5 forever begin

6 @ (reset_trigger);
7 @ (negedge clk);
8 reset = 1;
9 @ (negedge clk);

10 reset = 0;
11 −> reset_done_trigger;
12 end

13end

Adding test case logic

Moving forward, lets add logic to generate the test cases, ok we have three testcases as in the first

part of this tutorial. Lets list them again.

Reset Test : We can start with reset deasserted, followed by asserting reset for few clock
ticks and deasserting the reset, See if counter sets its output to zero.

•

Enable Test : Assert/deassert enable after reset is applied.•
Random Assert/deassert of enable and reset.•

Repeating it again "There are many ways" to code a test case, it all depends on the creativity of
the Test bench designer. Lets take a simple approach and then slowly build upon it.

Test Case 1 − Asserting/ Deasserting reset

www.asic−world.com ART OF WRITING TESTBENCHES 139

In this test case, we will just trigger the event reset_trigger after 10 simulation units.

1initial
2begin: TEST_CASE
3 #10 −> reset_trigger;
4end

Test Case 2 − Assert/ Deassert enable after reset is applied.
In this test case, we will trigger the reset logic and wait for the reset logic to complete its operation,
before we start driving enable signal to logic 1.

1initial
2begin: TEST_CASE
3 #10 −> reset_trigger;
4 @ (reset_done_trigger);
5 @ (negedge clk);
6 enable = 1;
7 repeat (10) begin

8 @ (negedge clk);
9 end

10 enable = 0;
11end

Test Case 3 − Assert/Deassert enable and reset randomly.
In this testcase we assert the reset, and then randomly drive values on to enable and reset signal.

1initial
2begin : TEST_CASE
3 #10 −> reset_trigger;
4 @ (reset_done_trigger);
5 fork

6 repeat (10) begin

7 @ (negedge clk);
8 enable = $random;
9 end

10 repeat (10) begin

11 @ (negedge clk);
12 reset = $random;
13 end

14 join

15end

Well you might ask, are all this three test case exist in same file, well the answer is no. If we try to
have all three test cases on one file, then we end up having race condition due to three initial
blocks driving reset and enable signal. So normally, once test bench coding is done, test cases are
coded separately and included in testbench as `include directive as shown below. (There are
better ways to do this, but you have to think how you want to do it).

www.asic−world.com ART OF WRITING TESTBENCHES 140

If you look closely all the three test cases, you will find that, even through test case execution is
not complete, simulation terminates. To have better control, what we can do is, add a event like
"terminate_sim" and execute $finish only when this event is triggered. We can trigger this event at
the end of test case execution. The code for $finish now could look as below.

1event terminate_sim;
2initial begin
3 @ (terminate_sim);
4 #5 $finish;
5end

and the modified test case #2 would like.

1initial
2begin: TEST_CASE
3 #10 −> reset_trigger;
4 @ (reset_done_trigger);
5 @ (negedge clk);
6 enable = 1;
7 repeat (10) begin

8 @ (negedge clk);
9 end

10 enable = 0;
11 #5 −> terminate_sim;
12end
13

Second problem with the approach that we have taken till now it that, we need to manually check
the waveform and also the output of simulator on the screen to see if the DUT is working correctly.
Part IV shows how to automate this.

Adding compare Logic

To make any testbench self checking/automated, first we need to develop model that mimics the
DUT in functionality. In our example, to mimic DUT, it going to be very easy, but at times if DUT is
complex, then to mimic the DUT will be a very complex and requires lot of innovative techniques to
make self checking work.

1reg [3:0] count_compare;
2
3always @ (posedge clk)
4if (reset == 1'b1) begin
5 count_compare <= 0;
6end else if (enable == 1'b1) begin
7 count_compare <= count_compare + 1;
8end

www.asic−world.com ART OF WRITING TESTBENCHES 141

Once we have the logic to mimic the DUT functionality, we need to add the checker logic, which at
any given point keeps checking the expected value with the actual value. Whenever there is any
error, it print's out the expected and actual value, and also terminates the simulation by triggering
the event "terminate_sim".

1always @ (posedge clk)
2if (count_compare != count) begin
3 $display ("DUT Error at time %d" , $time);
4 $display (" Expected value %d, Got Value %d" , count_compare, count);
5 #5 −> terminate_sim;
6end

Now that we have the all the logic in place, we can remove $display and $monitor, as our
testbench have become fully automatic, and we don't require to manually verify the DUT input and
output. Try changing the count_compare = count_compare +2, and see how compare logic works.
This is just another way to see if our testbench is stable.

We could add some fancy printing as shown in the figure below to make our test env more friendly.

 C:\Download\work>veridos counter.v counter_tb.v
 VeriWell for Win32 HDL Sat Jan 18 20:10:35 2003

 This is a free version of the VeriWell for Win32 Simulator
 Distribute this freely; call 1−800−VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1993−97 Wellspring Solutions, Inc.
 All rights reserved

 Memory Available: 0
 Entering Phase I...
 Compiling source file : counter.v
 Compiling source file : counter_tb.v
 The size of this model is [5%, 6%] of the capacity of the free version

 Entering Phase II...
 Entering Phase III...
 No errors in compilation
 Top−level modules:
 counter_tb

 ##
 Applying reset
 Came out of Reset
 Terminating simulation
 Simulation Result : PASSED
 ###
 Exiting VeriWell for Win32 at time 96
 0 Errors, 0 Warnings, Memory Used: 0
 Compile time = 0.0, Load time = 0.0, Simulation time = 0.0

 Normal exit
 Thank you for using VeriWell for Win32

www.asic−world.com ART OF WRITING TESTBENCHES 142

I know, you would like to see the test bench code that I used to generate above output, well you
can find it here and counter code here.

There are lot of things that I have not covered, may be when I find time, I may add some more
details on this subject.

As of books, I am yet to find a good book on writing test benches.

www.asic−world.com ART OF WRITING TESTBENCHES 143

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com ART OF WRITING TESTBENCHES 144

MODELING MEMORIES AND FSM
CHAPTER 14

www.asic−world.com MODELING MEMORIES AND FSM 145

Memory Modeling
To help modeling of memory, Verilog provides support of two dimension arrays. Behavioral models
of memories are modeled by declaring an array of register variables, any word in the array may be
accessed by using an index into the array. A temporary variable is required to access a discrete bit
within the array.

Syntax

reg [wordsize:0] array_name [0:arraysize]

Examples

Declaration
reg [7:0] my_memory [0:255];

Here [7:0] is width of memory and [0:255] is depth of memory with following parameters

Width : 8 bits, little endian•
Depth : 256, address 0 corresponds to location 0 in array.•

Storing Values
my_memory[address] = data_in;

Reading Values
data_out = my_memory[address];

Bit Read
Sometime there may be need to just read only one bit. Unfortunately Verilog does not allow to read
only or write only one bit, the work around for such a problem is as shown below.

data_out = my_memory[address];

data_out_it_0 = data_out[0];

Initializing Memories

A memory array may be initialized by reading memory pattern file from disk and storing it on the
memory array. To do this, we use system task $readmemb and $readmemh. $readmemb is used
for binary representation of memory content and $readmemh for hex representation.

Syntax
$readmemh("file_name",mem_array,start_addr,stop_addr);

www.asic−world.com MODELING MEMORIES AND FSM 146

Note : start_addr and stop_addr are optional.

Example − Simple memory

1module memory();
2reg [7:0] my_memory [0:255];
3
4initial begin
5 $readmemh("memory.list" , my_memory);
6end
7endmodule

Example − Memory.list file

1//Comments are allowed
21100_1100 // This is first address i.e 8'h00
31010_1010 // This is second address i.e 8'h01
4@ 55 // Jump to new address 8'h55
50101_1010 // This is address 8'h55
60110_1001 // This is address 8'h56

$readmemh system task can also be used for reading test bench vectors. I will cover this in detail
in test bench section. When I find time.

Refer to the examples section for more details on different types of memories.

Introduction to FSM
State machine or FSM are the heart of any digital design, of course counter is a simple form of
FSM. When I was learning Verilog, I use to wonder "How do I code FSM in Verilog" and "What is
the best way to code it". I will try to answer the first part of the question below and second part of
the question could be found in the tidbits section.

State machine Types
There are two types of state machines as classified by the types of outputs generated from each.
The first is the Moore State Machine where the outputs are only a function of the present state, the
second is the Mealy State Machine where one or more of the outputs are a function of the present
state and one or more of the inputs.

Mealy Model

www.asic−world.com MODELING MEMORIES AND FSM 147

Moore Model

State machines can also be classified based on type state encoding used. Encoding style is also a
critical factor which decides speed, and gate complexity of the FSM. Binary, gray, one hot, one
cold, and almost one hot are the different types of encoding styles used in coding FSM states.

Modeling State machines.

One thing that need to be kept in mind when coding FSM is that, combinational logic and
sequence logic should be in two different always blocks. In the above two figures, next state logic
is always the combinational logic. State Registers and Output logic are sequential logic. It is very
important that any asynchronous signal to the next state logic should be synchronized before
feeding to FSM. Always try to keep FSM in separate Verilog file.

Using constants declaration like parameter or `define to define states of the FSM, this makes code
more readable and easy to manage.

Example − Arbiter

We will be using the arbiter FSM to study FSM coding styles in Verilog.

www.asic−world.com MODELING MEMORIES AND FSM 148

Verilog Code
FSM code should have three sections,

Encoding style.•
Combinational part.•
Sequential part.•

Encoding Style

There are many encoding styles around, some of which are

Binary Encoding•
One Hot Encoding•
One Cold Encoding•
Almost One Hot Encoding•
Almost One Cold Encoding•
Gray Encoding•

Of all the above types we normally use one hot and binary encoding.

One Hot Encoding

1parameter [4:0] IDLE = 5'b0_0001;
2parameter [4:0] GNT0 = 5'b0_0010;
3parameter [4:0] GNT1 = 5'b0_0100;
4parameter [4:0] GNT2 = 5'b0_1000;
5parameter [4:0] GNT3 = 5'b1_0000;

Binary Encoding

www.asic−world.com MODELING MEMORIES AND FSM 149

1parameter [2:0] IDLE = 3'b000;
2parameter [2:0] GNT0 = 3'b001;
3parameter [2:0] GNT1 = 3'b010;
4parameter [2:0] GNT2 = 3'b011;
5parameter [2:0] GNT3 = 3'b100;

Gray Encoding

1parameter [2:0] IDLE = 3'b000;
2parameter [2:0] GNT0 = 3'b001;
3parameter [2:0] GNT1 = 3'b011;
4parameter [2:0] GNT2 = 3'b010;
5parameter [2:0] GNT3 = 3'b110;

Combinational Section

This section can be modeled using function, assign statement or using always block with case
statement. For time being lets see always block version

1always @ (state or req_0 or req_1)
2begin

3 next_state = 0;
4 case(state)
5 IDLE : if (req_0 == 1'b1) begin

6 next_state = GNT0;
7 end else if (req_1 == 1'b1) begin

8 next_state= GNT1;
9 end else if (req_2 == 1'b1) begin

10 next_state= GNT2;
11 end else if (req_3 == 1'b1) begin

12 next_state= GNT3;
13 end else begin

14 next_state = IDLE;
15 end

16 GNT0 : if (req_0 == 1'b0) begin

17 next_state = IDLE;
18 end else begin

19 next_state = GNT0;
20 end

21 GNT1 : if (req_1 == 1'b0) begin

22 next_state = IDLE;
23 end else begin

24 next_state = GNT1;
25 end

26 GNT2 : if (req_2 == 1'b0) begin

27 next_state = IDLE;
28 end else begin

29 next_state = GNT2;

www.asic−world.com MODELING MEMORIES AND FSM 150

30 end

31 GNT3 : if (req_3 == 1'b0) begin

32 next_state = IDLE;
33 end else begin

34 next_state = GNT3;
35 end

36 default : next_state = IDLE;
37 endcase

38end

Sequential Section

This section has be modeled using only edge sensitive logic such as always block with posedge or
negedge of clock

1always @ (posedge clock)
2begin : OUTPUT_LOGIC
3 if (reset == 1'b1) begin

4 gnt_0 <= #1 1'b0;
5 gnt_1 <= #1 1'b0;
6 gnt_2 <= #1 1'b0;
7 gnt_3 <= #1 1'b0;
8 state <= #1 IDLE;
9 end else begin

10 state <= #1 next_state;
11 case(state)
12 IDLE : begin

13 gnt_0 <= #1 1'b0;
14 gnt_1 <= #1 1'b0;
15 gnt_2 <= #1 1'b0;
16 gnt_3 <= #1 1'b0;
17 end

18 GNT0 : begin

19 gnt_0 <= #1 1'b1;
20 end

21 GNT1 : begin

22 gnt_1 <= #1 1'b1;
23 end

24 GNT2 : begin

25 gnt_2 <= #1 1'b1;
26 end

27 GNT3 : begin

28 gnt_3 <= #1 1'b1;
29 end

30 default : begin

31 state <= #1 IDLE;
32 end

33 endcase

34 end

35end

www.asic−world.com MODELING MEMORIES AND FSM 151

Full Code using binary encoding

1module fsm_full(
2clock , // Clock
3reset , // Active high reset
4req_0 , // Active high request from agent 0
5req_1 , // Active high request from agent 1
6req_2 , // Active high request from agent 2
7req_3 , // Active high request from agent 3
8gnt_0 , // Active high grant to agent 0
9gnt_1 , // Active high grant to agent 1

10gnt_2 , // Active high grant to agent 2
11gnt_3 // Active high grant to agent 3
12);
13// Port declaration here
14input clock ; // Clock
15input reset ; // Active high reset
16input req_0 ; // Active high request from agent 0
17input req_1 ; // Active high request from agent 1
18input req_2 ; // Active high request from agent 2
19input req_3 ; // Active high request from agent 3
20output gnt_0 ; // Active high grant to agent 0
21output gnt_1 ; // Active high grant to agent 1
22output gnt_2 ; // Active high grant to agent 2
23output gnt_3 ; // Active high grant to agent
24
25// Internal Variables
26reg gnt_0 ; // Active high grant to agent 0
27reg gnt_1 ; // Active high grant to agent 1
28reg gnt_2 ; // Active high grant to agent 2
29reg gnt_3 ; // Active high grant to agent
30
31parameter [2:0] IDLE = 3'b000;
32parameter [2:0] GNT0 = 3'b001;
33parameter [2:0] GNT1 = 3'b010;
34parameter [2:0] GNT2 = 3'b011;
35parameter [2:0] GNT3 = 3'b100;
36
37reg [2:0] state, next_state;
38
39always @ (state or req_0 or req_1 or req_2 or req_3)
40begin

41 next_state = 0;
42 case(state)
43 IDLE : if (req_0 == 1'b1) begin

44 next_state = GNT0;
45 end else if (req_1 == 1'b1) begin

46 next_state= GNT1;
47 end else if (req_2 == 1'b1) begin

48 next_state= GNT2;
49 end else if (req_3 == 1'b1) begin

www.asic−world.com MODELING MEMORIES AND FSM 152

50 next_state= GNT3;
51 end else begin

52 next_state = IDLE;
53 end

54 GNT0 : if (req_0 == 1'b0) begin

55 next_state = IDLE;
56 end else begin

57 next_state = GNT0;
58 end

59 GNT1 : if (req_1 == 1'b0) begin

60 next_state = IDLE;
61 end else begin

62 next_state = GNT1;
63 end

64 GNT2 : if (req_2 == 1'b0) begin

65 next_state = IDLE;
66 end else begin

67 next_state = GNT2;
68 end

69 GNT3 : if (req_3 == 1'b0) begin

70 next_state = IDLE;
71 end else begin

72 next_state = GNT3;
73 end

74 default : next_state = IDLE;
75 endcase

76end
77
78always @ (posedge clock)
79begin : OUTPUT_LOGIC
80 if (reset) begin

81 gnt_0 <= #1 1'b0;
82 gnt_1 <= #1 1'b0;
83 gnt_2 <= #1 1'b0;
84 gnt_3 <= #1 1'b0;
85 state <= #1 IDLE;
86 end else begin

87 state <= #1 next_state;
88 case(state)
89 IDLE : begin

90 gnt_0 <= #1 1'b0;
91 gnt_1 <= #1 1'b0;
92 gnt_2 <= #1 1'b0;
93 gnt_3 <= #1 1'b0;
94 end

95 GNT0 : begin

96 gnt_0 <= #1 1'b1;
97 end

98 GNT1 : begin

99 gnt_1 <= #1 1'b1;
100 end

www.asic−world.com MODELING MEMORIES AND FSM 153

101 GNT2 : begin

102 gnt_2 <= #1 1'b1;
103 end

104 GNT3 : begin

105 gnt_3 <= #1 1'b1;
106 end

107 default : begin

108 state <= #1 IDLE;
109 end

110 endcase

111 end

112end
113
114endmodule

Testbench
1`include "fsm_full.v"
2
3module fsm_full_tb();
4reg clock , reset ;
5reg req_0 , req_1 , req_2 , req_3;
6wire gnt_0 , gnt_1 , gnt_2 , gnt_3 ;
7
8initial begin
9 $display("Time\t R0 R1 R2 R3 G0 G1 G2 G3");

10 $monitor("%g\t %b %b %b %b %b %b %b %b" , $time, req_0, req_1, req_2, req_3, gnt_0, gnt_1, gnt_2, gnt_3);
11 clock = 0;
12 reset = 0;
13 req_0 = 0;
14 req_1 = 0;
15 req_2 = 0;
16 req_3 = 0;
17 #10 reset = 1;
18 #10 reset = 0;
19 #10 req_0 = 1;
20 #20 req_0 = 0;
21 #10 req_1 = 1;
22 #20 req_1 = 0;
23 #10 req_2 = 1;
24 #20 req_2 = 0;
25 #10 req_3 = 1;
26 #20 req_3 = 0;
27 #10 $finish;
28end
29
30always
31#2 clock = ~clock;
32
33
34fsm_full U_fsm_full(
35clock , // Clock
36reset , // Active high reset
37req_0 , // Active high request from agent 0

www.asic−world.com MODELING MEMORIES AND FSM 154

38req_1 , // Active high request from agent 1
39req_2 , // Active high request from agent 2
40req_3 , // Active high request from agent 3
41gnt_0 , // Active high grant to agent 0
42gnt_1 , // Active high grant to agent 1
43gnt_2 , // Active high grant to agent 2
44gnt_3 // Active high grant to agent 3
45);
46
47
48
49endmodule

Simulator Output
 Time R0 R1 R2 R3 G0 G1 G2 G3
 0 0 0 0 0 x x x x
 7 0 0 0 0 0 0 0 0
 30 1 0 0 0 0 0 0 0
 35 1 0 0 0 1 0 0 0
 50 0 0 0 0 1 0 0 0
 55 0 0 0 0 0 0 0 0
 60 0 1 0 0 0 0 0 0
 67 0 1 0 0 0 1 0 0
 80 0 0 0 0 0 1 0 0
 87 0 0 0 0 0 0 0 0
 90 0 0 1 0 0 0 0 0
 95 0 0 1 0 0 0 1 0
 110 0 0 0 0 0 0 1 0
 115 0 0 0 0 0 0 0 0
 120 0 0 0 1 0 0 0 0
 127 0 0 0 1 0 0 0 1
 140 0 0 0 0 0 0 0 1
 147 0 0 0 0 0 0 0 0

www.asic−world.com MODELING MEMORIES AND FSM 155

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com MODELING MEMORIES AND FSM 156

PARAMETERIZED MODULES
CHAPTER 15

www.asic−world.com PARAMETERIZED MODULES 157

Introduction
Lets assume that we have a design, which requires us to have counters of various width, but of
same functionality. May be we can assume that we have a design which requires lot of instants of
different depth and width of RAM's of same functionality. Normally what we do is, create counters
of different widths and then use them. Same rule applies to RAM that we talked about.

But Verilog provides a powerful way to work around this problem, it provides us with something
called parameter, these parameters are like constants local to that particular module.

We can override the default values with either using defparam or by passing new set of
parameters during instantiating. We call this as parameter over riding.

Parameters
A parameter is defined by Verilog as a constant value declared within the module structure. The
value can be used to define a set of attributes for the module which can characterize its behavior
as well as its physical representation.

Defined inside a module.•
Local scope.•
May be overridden at instantiation time•

If multiple parameters are defined, they must be overridden in the order they were
defined. If an overriding value is not specified, the default parameter declaration
values are used.

♦

May be changed using the defparam statement•

Parameter Override using defparam

1module secret_number;
2parameter my_secret = 0;
3
4initial begin
5 $display("My secret number is %d" , my_secret);
6end
7
8endmodule
9

10module defparam_example();
11
12defparam U0.my_secret = 11;
13defparam U1.my_secret = 22;
14
15secret_number U0();
16secret_number U1();
17
18endmodule

Parameter Override during instantiating.

www.asic−world.com PARAMETERIZED MODULES 158

1module secret_number;
2parameter my_secret = 0;
3
4initial begin
5 $display("My secret number in module is %d" , my_secret);
6end
7
8endmodule
9

10module param_overide_instance_example();
11
12secret_number #(11) U0();
13secret_number #(22) U1();
14
15endmodule

Passing more then one parameter

1module ram_sp_sr_sw (
2clk , // Clock Input
3address , // Address Input
4data , // Data bi−directional
5cs , // Chip Select
6we , // Write Enable/Read Enable
7oe // Output Enable
8);
9

10parameter DATA_WIDTH = 8 ;
11parameter ADDR_WIDTH = 8 ;
12parameter RAM_DEPTH = 1 << ADDR_WIDTH;
13// Actual code of RAM here
14
15endmodule

When instantiating more then the one parameter, parameter values should be passed in order they
are declared in sub module.

1module ram_controller (); //Some ports
2
3// Controller Code
4
5ram_sp_sr_sw #(16,8,256) ram(clk,address,data,cs,we,oe);
6
7endmodule

Verilog 2001
In Verilog 2001, above code will work, but the new feature makes the code more readable and
error free.

www.asic−world.com PARAMETERIZED MODULES 159

1module ram_controller (); //Some ports
2
3ram_sp_sr_sw #(
4.DATA_WIDTH(16),
5.ADDRE_WIDTH(8),
6.RAM_DEPTH(256)) ram(clk,address,data,cs,we,oe);
7
8endmodule

Was this copied from VHDL?

www.asic−world.com PARAMETERIZED MODULES 160

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com PARAMETERIZED MODULES 161

VERILOG SYNTHESIS TUTORIAL
CHAPTER 16

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 162

What is logic synthesis ?
Logic synthesis is the process of converting a high−level description of design into an optimized
gate−level representation. Logic synthesis uses standard cell library which have simple cells, such
as basic logic gates like and, or, and nor, or macro cells, such as adder, muxes, memory, and
flip−flops. Standard cells put together is called technology library. Normally technology library is
know by the transistor size (0.18u, 90nm).

A circuit description is written in Hardware description language (HDL) such as Verilog. The
designer should first understand the architectural description. Then he should consider design
constraints such as timing, area, testability, and power.

We will see a typical design flow with a large example in last chapter of Verilog tutorial.

Life before HDL (Logic synthesis)

As you must have experienced in college, every thing (all the digital circuits) is designed manually.
Draw K−maps, optimize the logic, Draw the schematic. This is how engineers used to design
digital logic circuits in early days. Well this works fine as long as the design is few hundred gates.

Impact of HDL and Logic synthesis.

High−level design is less prone to human error because designs are described at a higher level of
abstraction. High−level design is done without significant concern about design constraints.
Conversion from high−level design to gates is done by synthesis tools, while doing so it used
various algorithms to optimize the design as a whole. This removes the problem with varied
designer styles for the different blocks in the design and suboptimal designs. Logic synthesis tools
allow technology independent design. Design reuse is possible for technology−independent
descriptions.

What do we discuss here ?

When it comes to Verilog, the synthesis flow is same as rest of the languages. What we intent to
look in next few pages is how particular code gets translated to gates. As you must have wondered
while reading earlier chapters, how could this be represented in Hardware. Example would be
"delays". There is no way we could synthesize delays, but of course we can add delay to particular

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 163

signal by adding buffers. But then this becomes too dependent on synthesis target technology.
(More on this in VLSI section).

First we will look at the constructs that are not supported by synthesis tools, Table below shows
the constructs that are supported by the synthesis tool.

Constructs Not Supported in Synthesis

Construct Type Notes

initial Used only in test benches.

events Events make more sense for syncing test bench components

real Real data type not supported.

time Time data type not supported

force and release Force and release of data types not supported

assign and deassign assign and deassign of reg data types is not supported. But
assign on wire data type is supported

fork join Use nonblocking assignments to get same effect.

primitives Only gate level primitives are supported

table UDP and tables are not supported.

Example of Non−Synthesizable Verilog construct.

Any code that contains above constructs are not synthesizable, but within synthesizable
constructs, bad coding could cause synthesis issues. I have seen codes where engineers code a
flip−flop with both posedge of clock and negedge of clock in sensitivity list.

Then we have another common type of code, where one reg variable is driven from more then one
always blocks. Well it will surely cause synthesis error.

Example − Initial Statement

1module synthesis_initial(
2clk,q,d);
3input clk,d;
4output q;
5reg q;
6
7initial begin
8 q <= 0;
9end

10
11always @ (posedge clk)
12begin

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 164

13 q <= d;
14end
15
16endmodule

Delays
a = #10 b; This code is useful only for simulation purpose.

Synthesis tool normally ignores such constructs, and just assumes that there is no #10 in above
statement. Thus treating above code as below.

a = b;

Comparison to X and Z are always ignored

1module synthesis_compare_xz (a,b);
2output a;
3input b;
4reg a;
5
6always @ (b)
7begin

8 if ((b == 1'bz) || (b == 1'bx)) begin

9 a = 1;
10 end else begin

11 a = 0;
12 end

13end
14
15endmodule

There seems to a common problem with all the new to hardware design engineers. They normally
tend to compare variables with X and Z. In practice it is worst thing to do. So please avoid
comparing with X and Z. Limit your design to two state's, 0 and 1. Use tri−state only at chip IO
pads level. We will see this as a example in next few pages.

Constructs Supported in Synthesis
Verilog is such a simple language, you could easily write code which is easy to understand and
easy to map to gates. Code which uses if, case statements are simple and cause little headache's
with synthesis tools. But if you like fancy coding and like to have some trouble. Ok don't be scared,
you could use them after you get some experience with Verilog. Its great fun to use high level
constructs, saves time.

Most common way to model any logic is to use either assign statement or always block. assign
statement can be used for modeling only combinational logic and always can be used for modeling
both combinational and Sequential logic.

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 165

Construct Type Keyword or Description Notes

ports input, inout, output Use inout only at IO level.

parameters parameter This makes design more generic

module definition module

signals and variables wire, reg, tri Vectors are allowed

instantiation module instances primitive
gate instances

Eg− nand (out,a,b) bad idea to code
RTL this way.

function and tasks function , task Timing constructs ignored

procedural always, if, then, else, case,
casex, casez initial is not supported

procedural blocks begin, end, named blocks,
disable Disabling of named blocks allowed

data flow assign Delay information is ignored

named Blocks disable Disabling of named block supported.

loops for, while, forever
While and forever loops must
contain @(posedge clk) or
@(negedge clk)

Operators and their Effect.

One common problem that seems to occure, getting confused with logical and Reduction
operators. So watch out.

Operator Type Operator Symbol Operation Performed

Arithmetic * Multiply

/ Division

+ Add

− Subtract

% Modulus

+ Unary plus

− Unary minus

Logical ! Logical negation

&& Logical and

|| Logical or

Relational > Greater than

< Less than

>= Greater than or equal

<= Less than or equal

Equality == Equality

!= inequality

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 166

Reduction & Bitwise negation

~& nand

| or

~| nor

^ xor

^~ ~^ xnor

Shift >> Right shift

<< Left shift

Concatenation { } Concatenation

Conditional ? conditional

Logic Circuit Modeling
From what we have learn in digital design, we know that there could be only two types of digital
circuits. One is combinational circuits and second is sequential circuits. There are very few rules
that need to be followed to get good synthesis output and avoid surprises.

Combinational Circuit Modeling using assign

Combinational circuits modeling in Verilog can be done using assign and always blocks. Writing
simple combination circuit in Verilog using assign statement is very straight forward. Like in
example below

assign y = (a&b) | (c^d);

Tri−state buffer

1module tri_buf (a,b,enable);
2input a;
3output b;
4input enable;
5wire b;
6
7assign b = (enable) ? a : 1'bz;
8
9endmodule

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 167

Mux

1module mux_21 (a,b,sel,y);
2input a, b;
3output y;
4input sel;
5wire y;
6
7assign y = (sel) ? b : a;
8
9endmodule

Simple Concatenation

1module bus_con (a,b);
2input [3:0] a, b;
3output [7:0] y;
4wire [7:0] y;
5
6assign y = {a,b};
7
8endmodule

1 bit adder with carry

1module addbit (
2a , // first input
3b , // Second input
4ci , // Carry input
5sum , // sum output
6co // carry output
7);
8//Input declaration
9input a;

10input b;
11input ci;
12//Ouput declaration
13output sum;
14output co;

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 168

15//Port Data types
16wire a;
17wire b;
18wire ci;
19wire sum;
20wire co;
21//Code starts here
22assign {co,sum} = a + b + ci;
23
24endmodule // End of Module addbit

Multiply by 2

1module muliply (a,product);
2input [3:0] a;
3output [4:0] product;
4wire [4:0] product;
5
6assign product = a << 1;
7
8endmodule

3 is to 8 decoder

1module decoder (in,out);
2input [2:0] in;
3output [7:0] out;
4wire [4:0] out;
5assign out = (in == 3'b000) ? 8'b0000_0001 :
6(in == 3'b001) ? 8'b0000_0010 :
7(in == 3'b010) ? 8'b0000_0100 :
8(in == 3'b011) ? 8'b0000_1000 :
9(in == 3'b100) ? 8'b0001_0000 :

10(in == 3'b101) ? 8'b0010_0000 :
11(in == 3'b110) ? 8'b0100_0000 :
12(in == 3'b111) ? 8'b1000_0000 : 8'h00;
13
14endmodule

Combinational Circuit Modeling using always

While modeling using always statement, there is chance of getting latch after synthesis if proper
care is not taken care. (no one seems to like latches in design, though they are faster, and take
lesser transistor. This is due to the fact that timing analysis tools always have problem with latches
and second reason being, glitch at enable pin of latch is another problem).

One simple way to eliminate latch with always statement is, always drive 0 to the LHS variable in
the beginning of always code as shown in code below.

3 is to 8 decoder using always

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 169

1module decoder_always (in,out);
2input [2:0] in;
3output [7:0] out;
4reg [4:0] out;
5
6always @ (in)
7begin

8 out = 0;
9 case (in)

10 3'b001 : out = 8'b0000_0001;
11 3'b010 : out = 8'b0000_0010;
12 3'b011 : out = 8'b0000_0100;
13 3'b100 : out = 8'b0000_1000;
14 3'b101 : out = 8'b0001_0000;
15 3'b110 : out = 8'b0100_0000;
16 3'b111 : out = 8'b1000_0000;
17 endcase

18end
19
20endmodule

Sequential Circuit Modeling

Sequential logic circuits are modeled by use of edge sensitive elements in sensitive list of always
blocks. Sequential logic can be modeled only by use of always blocks. Normally we use
nonblocking assignments for sequential circuits.

Simple Flip−Flop

1module flif_flop (clk,reset, q, d);
2input clk, reset, d;
3output q;
4reg q;
5
6always @ (posedge clk)
7begin

8 if (reset == 1) begin

9 q <= 0;
10 end else begin

11 q <= d;
12 end

13end
14
15endmodule

Verilog Coding Style
If you look at the above code, you will see that I have imposed coding style that looks cool. Every
company has got its own coding guidelines and tools like linters to check for this coding guidelines.
Below is small list of guidelines.

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 170

Use meaningful names for signals and variables•
Don't mix level and edge sensitive in one always block•
Avoid mixing positive and negative edge−triggered flip−flops•
Use parentheses to optimize logic structure•
Use continuous assign statements for simple combo logic.•
Use nonblocking for sequential and blocking for combo logic•
Don't mix blocking and nonblocking assignments in one always block. (Though Design
compiler supports them!!).

•

Be careful with multiple assignments to the same variable•
Define if−else or case statements explicitly.•

Note : Suggest if you want more details.

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 171

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com VERILOG SYNTHESIS TUTORIAL 172

VERILOG PLI TUTORIAL
CHAPTER 17

www.asic−world.com VERILOG PLI TUTORIAL 173

Introduction
Verilog PLI(Programming Language Interface) is a mechanism to invoke C or C++ functions from
Verilog code.

The function invoked in Verilog code is called a system call. An example of a built−in system call is
$display, $stop, $random. PLI allows the user to create custom system calls, Something that
Verilog syntax does not allow us to do. Some of this are:−

Power analysis.•
Code coverage tools.•
Can modify the Verilog simulation data structure − more accurate delays.•
Custom output displays.•
Co−simulation.•
Design debug utilities.•
Simulation analysis.•
C−model interface to accelerate simulation.•
Testbench modeling.•

To achieve above few application of PLI, C code should have the access to the internal data
structure of the Verilog simulator. To facilitate this Verilog PLI provides with something called acc
routines or simply access routines.

There is second set of routines, which are called tf routines, or simply task and function routines.
The tf and acc are PLI 1.0 routines and is very vast and very old routines. The next set of routine,
which was introduced with latest release of Verilog 2001 is called vpi routines. This is small and
crystal clear PLI routines and thus the new version PLI 2.0.

You can get Verilog 2001 LRM or PLI 1.0 IEEE document for details of each and every functions
provided. Verilog IEEE LRM's are written in such a way that anyone with hardware background
can understand. If you are unable to get hold of above IEEE docs, then you can buy PLI books
listed in books section.

How it Works

Write the functions in C/C++ code.•
Compile them to generate shared lib (*.DLL in Windows and *.so in UNIX). Simulator like
VCS allows static linking.

•

Use this Functions in Verilog code (Mostly Verilog Testbench).•
Based on simulator, pass the C/C++ function details to simulator during compile process of
Verilog Code (This is called linking, and you need to refer to simulator user guide to
understand how this is done).

•

Once linked just run the simulator like any other Verilog simulation.•

www.asic−world.com VERILOG PLI TUTORIAL 174

During execution of the Verilog code by the simulator, when ever the simulator encounters the
user defines system tasks (the one which starts with $), the execution control is passed to PLI
routine (C/C++ function).

Example − Hello World

We will define a function hello, which when called will print "Hello Deepak". This example does not
use any of the PLI standard functions (ACC, TF and VPI). For exact linking details, please refer to
simulator manuals. Each simulator implements its own way for linking C/C++ functions to
simulator.

C Code

1#include < stdio.h >
2void hello () {
3 printf ("\nHello Deepak\n");
4}

Verilog Code

1module hello_pli ();
2
3initial begin
4 $hello;
5 #10 $finish;
6end
7
8endmodule

Running the Simulation
Once linking is done, simulation is run as a normal simulation as we had seen earlier with slight
modification to the command line options. Like we need to tell the simulator that we are using PLI
(Modelsim needs to know which shared objects to load in command line).

www.asic−world.com VERILOG PLI TUTORIAL 175

Writing PLI Application

Example that we saw was too basic and is no good for any practical purpose. Lets consider our
infamous counter example and write the DUT reference model and Checker in C and link that to
Verilog Testbench. First lets list out the requirements for writing a C model using PLI.

Means of calling the C model, when ever there is change in input signals (Could be wire or
reg or types).

•

Means to get the value of the changes signals in Verilog code or any other signals in
Verilog code from inside the C code.

•

Means to drive the value on any signal inside the Verilog code from C code.•
There are set of routines (functions), that Verilog PLI provides which satisfy above requirements.

PLI Application Specification.

Lets define the requirements for our infamous counter testbench requirements using PLI. We will
call out PLI function as $counter_monitor.

Implements a Counter logic in C.•
Implements Checker logic in C.•
Terminates the simulation, when ever checker fails.•

Calling the C function.

Writing counter in C is so cool, but when do we increment the counter value. Well we need to
monitor the change in clock signal. (Note : By the way, it normally good idea to drive reset and
clock from Verilog code.) When ever the clock changes, counter function needs to be executed.
This can be achieved by using below routine.

Use acc_vcl_add routine. The syntax of which can be found in Verilog PLI LRM.•
acc_vcl_add routines basically allows us to monitor list of signals, and when ever any of the
monitor signals change, it calls the user defined function (i.e this function is called Consumer C

www.asic−world.com VERILOG PLI TUTORIAL 176

routine). VCL routine has four arguments

Handle to the monitored object•
Consumer C routine to call when the object value changes•
String to be passed to consumer C routine•
Predefined VCL flags: vcl_verilog_logic for logic monitoring vcl_verilog_strength for
strength monitoring

•

acc_vcl_add(net, display_net, netname, vcl_verilog_logic);

Lets look at the code below, before we go into details.

C Code − Basic
Counter_monitor is our C function, which will be called from the Verilog Testbench. As like any
another C code, we need to include the header files, specific to application that we are developing.
In our case we need to include acc routines include file.

The access routine acc_initialize initializes the environment for access routines and must be called
from your C−language application program before the program invokes any other access routines.
and before exiting a C−language application program that calls access routines, it is necessary to
also exit the access routine environment by calling acc_close at the end of the program.

1#include < stdio.h >
2#include "acc_user.h"
3
4typedef char * string;
5handle clk ;
6handle reset ;
7handle enable ;
8handle dut_count ;
9int count ;

10
11void counter_monitor()
12{
13
14 acc_initialize();
15 clk = acc_handle_tfarg(1);
16 reset = acc_handle_tfarg(2);
17 enable = acc_handle_tfarg(3);
18 dut_count = acc_handle_tfarg(4);
19 acc_vcl_add(clk,counter,null,vcl_verilog_logic);
20 acc_close();
21}
22
23void counter ()
24{
25 printf("Clock changed state\n");
26}

www.asic−world.com VERILOG PLI TUTORIAL 177

For accessing the Verilog objects, we use handle, A handle is a predefined data type that is a
pointer to a specific object in the design hierarchy. Each handle conveys information to access
routines about a unique instance of an accessible object information about the object¿s type, plus
how and where to find data about the object. But how do we pass the information of specific object
to handle. Well we can do this by number of ways, but for now, we will pass it from Verilog as
parameters to $counter_monitor , this parameters can be accessed inside the C−program with
acc_handle_tfarg() routine. Where the argument is numbers as in the code.

So clk = acc_handle_tfarg(1) basically makes the clk as the handle to first parameter passed.
Similarly we assign all the handle's. Now we can add clk to the signal list that need to be
monitored using the routine acc_vcl_add(clk,counter,null,vcl_verilog_logic). Here clk is the handle,
counter is the user function to execute, when clk changes.

The function counter() does not require any explation, it is simple Hello world type code.

Verilog Code
Below is the code of the simple testbench for the counter example. We call the C−function using
the syntax shown in code below. If object thats been passed is a instant, then it should be passed
inside double quotes. Since all our objects are nets or wires, there is no need to pass them inside
double quote.

1module counter_tb();
2reg enable;;
3reg reset;
4reg clk_reg;
5wire clk;
6wire [3:0] count;
7
8initial begin
9 enable = 0;

10 clk = 0;
11 reset = 0;
12 $display("Asserting reset");
13 #10 reset = 1;
14 #10 reset = 0;
15 $display ("Asserting Enable");
16 #10 enable = 1;
17 #20 enable = 0;
18 $display ("Terminating Simulator");
19 #10 $finish;
20end
21
22always
23#5 clk_reg = !clk_reg;
24
25assign clk = clk_reg;
26
27initial begin
28 $counter_monitor(top.clk,top.reset,top.enable,top.count);
29end

www.asic−world.com VERILOG PLI TUTORIAL 178

30
31counter U(
32.clk (clk),
33.reset (reset),
34.enable (enable),
35.count (count)
36);
37
38endmodule

Depending on the simulator in use, the compile and running various. When you run the code
above with the C code seen earlier we get following output

 Asserting reset
 Clock changed state
 Clock changed state
 Clock changed state
 Asserting Enable
 Clock changed state
 Clock changed state
 Clock changed state
 Clock changed state
 Clock changed state
 Clock changed state
 Terminating Simulator
 Clock changed state
 Clock changed state
 $finish at simulation time 60

C Code − Full
So now that we see that our function gets called whenever there is change in clock, we can write
the counter code. But wait, there is a problem, every time counter function makes a exit, the local
variables will loose its value. There are couple of ways we can preserve state of the variables.

Declare the counter variable as global•
Use tf_setworkarea() and tf_getworkarea() routine to store and restore the values of the
local variables.

•

Since we have only one variable, we can use the first solution. i.e. declare count as global
variable.

To write equivalent model for the counter, clock, reset, enable signal input to DUT is required and
to code checker, out of the DUT count is required. To read the values from the Verilog code, we
have PLI routine.

acc_fetch_value(handle,"formate")

but the value returned is a string, so we need to convert that into integer if, muli−bit vector signal is
read using this routine. pli_conv is a function which does this conversion. Routine tf_dofinish() is

www.asic−world.com VERILOG PLI TUTORIAL 179

used for terminating simulation, when DUT and TB count value does not match or in other words,
when simulation mismatch occurs.

Rest of the code is self explanatory. (Now time is 11:45PM, time to bed)

1#include < stdio.h >
2#include "acc_user.h"
3
4typedef char * string;
5handle clk ;
6handle reset ;
7handle enable ;
8handle dut_count ;
9int count ;

10
11void counter_monitor()
12{
13
14 acc_initialize();
15 clk = acc_handle_tfarg(1);
16 reset = acc_handle_tfarg(2);
17 enable = acc_handle_tfarg(3);
18 dut_count = acc_handle_tfarg(4);
19 acc_vcl_add(clk,counter,null,vcl_verilog_logic);
20 acc_close();
21}
22
23void counter ()
24{
25
26 string i_reset = acc_fetch_value(reset, "%b");
27 string i_enable = acc_fetch_value(enable, "%b");
28 string i_count = acc_fetch_value(dut_count, "%b");
29 string i_clk = acc_fetch_value(clk, "%b");
30 string high = "1" ;
31 int size_in_bits= acc_fetch_size (dut_count);
32 int tb_count = 0;
33 // Counter function goes here
34 if (*i_reset == *high) {
35 count = 0;
36 }
37 else if ((*i_enable == *high) && (*i_clk == *high)) {
38 if (count == 15) {
39 count = 0;
40 } else {
41 count = count + 1;
42 }
43 // Counter Checker function goes herecker logic goes here
44 if ((*i_clk != *high) && (*i_reset != *high)) {
45 tb_count = pli_conv(i_count,size_in_bits);
46 if (tb_count != count) {
47 printf("dut_error : Expect value %d, Got value %d\n" , count, tb_count);

www.asic−world.com VERILOG PLI TUTORIAL 180

48 tf_dofinish();
49 }
50 }
51 }
52 // Multi−bit vector to integer conversion.
53 int pli_conv (string in_string,int no_bits)
54 {
55 int conv = 0;
56 int i = 0;
57 int j = 0;
58 int bin = 0;
59 for (i = no_bits−1; i >= 0; i = i − 1) {
60 if (*(in_string + i) == 49) {
61 bin = 1;
62 } else if (*(in_string + i) == 120) {
63 printf ("Warning : X detected");
64 bin = 0;
65 } else if (*(in_string + i) == 122) {
66 printf ("Warning : Z detected");
67 bin = 0;
68 } else {
69 bin = 0;
70 }
71 conv = conv + (1 << j)*bin;
72 j ++;
73 }
74 return conv;
75 }

You can compile and simulate the above code with Simulator you have.

Note : There could be mistakes in the way I have written the code or taken the approach in
explaining PLI. Please mail me if you feel that it needs to be fixed or you have better way to show
how PLI tutorial should be written.

PLI Routines.
PLI 1.0 provides two types of routines, they are

access routine•
task and function routine.•

PLI 2.0 combined access routines and task and function routines into VPI routines, and also
clarified the confusion in PLI 1.0.

www.asic−world.com VERILOG PLI TUTORIAL 181

Access Routines

Access routines are C programming language routines that provide procedural access to
information within Verilog−HDL. Access routines perform one of two operations

Read Operation : read data about particular objects in your circuit design directly from internal data
structures. Access routines can read information about the following objects

Module instances•
Module ports•
Module paths•
Inter−module paths•
Top−level modules•
Primitive instances•
Primitive terminals•
Nets•
Registers•
Parameters•
Specparams•
Timing checks•
Named events•
Integer, real and time variables•

Write Operation : Write new information about objects in your circuit design into the internal data
structures. Access routines can write to following objects.

Inter−module paths.•
Module paths.•
Primitive instances.•
Timing checks.•
Register logic values.•
Sequential UDP logic values.•

Based on the operation performed by access routines, they are classified into 6 categories as
shown below.

Fetch : This routines return a variety of information about different objects in the design
hierarchy.

•

Handle : This routines return handles to a variety of objects in the design hierarchy.•
Modify : This routines alter the values of a variety of objects in the design hierarchy.•
Next : When used inside a loop construct, next routines find each object of a given type
that is related to a particular reference object in the design hierarchy.

•

Utility : This routines perform a variety of operations, such as initializing and configuring the
access routine environment.

•

www.asic−world.com VERILOG PLI TUTORIAL 182

Vcl : The Value Change Link (VCL) allows a PLI application to monitor the value changes
of selected objects.

•

Access Routines Reference

Routine Description

acc_handle_scope()
This function returns the handle to the scope of an
object. The scope can be either a module, task, function,
named parallel block, or named sequential block.

acc_handle_by_name() This routine returns the handle to a Verilog−HDL object
based on the specified name and scope.

acc_handle_parent() This function returns handle for the parent primitive
instance or module instance of an object

acc_handle_port() This function returns handle for a module port

acc_handle_hiconn()
This function returns the hierarchically higher net
connection to a scalar module port or a bit of a vector
port

acc_handle_loconn()
This function returns the hierarchically lower net
connection to a scalar module port or a bit of a vector
port.

acc_handle_path()
This function returns a handle to an inter−module path
that represents the connection from an output port to an
input port

acc_handle_modpath() This function returns handle to the path of a module

acc_handle_datapath() This function returns a handle to a datapath for a module
instance for the specified edge−sensitive module path

acc_handle_pathin() This function returns handle for the first net connected to
a module path source

acc_handle_pathout() This function returns handle for the first net connected to
a module path destination

acc_handle_condition() This function returns a handle to the conditional
expression for the specified path

acc_handle_tchk() This function returns handle for the specified timing
check of a module (or cell)

acc_handle_tchkarg1() This function returns handle for the net connected to the
first argument of a timing check

acc_handle_tchkarg2() This function returns handle for the net connected to the
second argument of a timing check

acc_handle_simulated_net() This function returns the simulated net associated with
the collapsed net passed as an argument

acc_handle_terminal() This function returns handle for a primitive_terminal

acc_handle_conn() This function returns handle to the net connected to a
primitive terminal

www.asic−world.com VERILOG PLI TUTORIAL 183

acc_handle_tfarg()
This function returns handle for the specified argument
of the system task or function associated (through the
PLI mechanism) with your C−language routine`

acc_fetch_attribute()
This function returns the value of a parameter or
specparam named as an attribute in your source
description

acc_fetch_paramtype() This function returns the data type of a parameter as
one of three predefined integer constants.

acc_fetch_paramval() This function returns the value of a parameter or
specparam

acc_fetch_defname() This function returns a pointer to the defining name of a
module instance or primitive instance

acc_fetch_fullname() This function returns a pointer to the full hierarchical
name of any named object or module path

acc_fetch_name() This function returns a pointer to the instance name of
any named object or module path

acc_fetch_delays() This function fetches different delay values for different
objects

acc_fetch_size() This function returns the bit size of a net, register, or
port.

acc_fetch_range() This function retrieves the most significant bit and least
significant bit range values for a vector.

acc_fetch_tfarg()
This function returns value of the specified argument of
the system task or function associated (through the PLI
mechanism) with your C−language routine

acc_fetch_direction() This function returns the direction of a port or terminal as
one of three predefined integer constants.

acc_fetch_index() This function returns a zero−based integer index for a
port or terminal

acc_fetch_edge()
This function returns the edge specifier (type) of a path
input or output terminal as one of these predefined
integer constants.

acc_set_value()
This function returns a pointer to a character string
indicating the logic or strength value of a net, register or
variable.

acc_initialize() This function initializes the environment for access
routines

acc_close()
This function frees internal memory used by access
routines; resets all configuration parameters to default
values

acc_configure() This function sets parameters that control the operation
of various access routines

acc_product_version() This function returns a pointer to a character string that
indicates what version of a Verilog simulator is linked to

www.asic−world.com VERILOG PLI TUTORIAL 184

the access routines

acc_version()
This function returns a pointer to a character string that
indicates version number of your access routine
software

acc_count() This function returns an integer count of the number of
objects related to a particular reference object

acc_collect()
This function returns a pointer to an array that contains
handles for all objects related to a particular reference
object

acc_free() This function frees memory allocated by acc_collect

acc_compare_handles() This function returns true if the two input handles refer to
the same object

acc_object_in_typelist() This function determines whether an object fits a type or
fulltype or exhibits a property specified in an input array

acc_object_of_type() This function determines whether an object fits a
specified type or fulltype, or exhibits a specified property

acc_next_cell() This function returns the next cell instance within the
region that includes the entire hierarchy below a module

acc_next_child() This function returns the next child of a module

acc_next_modpath() This function returns the next path of a module

acc_next_net() This function returns the next net of a module

acc_next_parameter() This function returns the next parameter within a module

acc_next_port() This function returns the next input, output or inout port
of a module in the order specified by the port list

acc_next_portout() This function returns the next output or inout port of a
module in the order specified by the port list

acc_next_primitive() This function returns the next gate, switch or
user−defined primitive (UDP) within a module

acc_next_specparam() This function returns the next specparam within a
module

acc_next_tchk() This function returns the next timing check within a
module

acc_next_terminal() This function returns the next terminal of a gate, switch
or user−defined primitive (UDP)

acc_next() This function within a scope, returns the next object of
each type specified in object_type_array

acc_next_topmod() This function returns the next top−level module

acc_next_cell_load() This function returns the next load on a net inside a cell

acc_next_load() This function returns the next primitive terminal driven by
a net

acc_next_driver() This function returns the next primitive terminal that
drives a net

www.asic−world.com VERILOG PLI TUTORIAL 185

acc_next_hiconn() This function returns the next hierarchically higher net
connection to a port of a module

acc_next_loconn() This function returns the next hierarchically lower net
connection to a port of a module

acc_next_bit() This function returns the handles of each bit in an
expanded vector port or expanded vector net

acc_next_input() This function returns a handle to the next input path
terminal of the specified module path or datapath

acc_next_output() This function returns a handle to the next output path
terminal of the specified module path or datapath

Program Flow using access routines
As seen in the earlier example, there set of steps that need to be performed before we could write
a user application. This can be shown as in the below program.

1#include < acc_user.h >
2
3void pli_func() {
4 acc_initialize();
5 // Main body: Insert the user application code here
6 acc_close();
7}

acc_user.h : all data−structure related to access routines•
acc_initialize() : initialize variables and set up environment•
main body : User−defined application•
acc_close() : Undo the actions taken by the function acc_initialize()•

Handle to Objects
Handle is a predefined data type, is similar to that of a pointer in C, can be used to point to an
object in the design database, can be used to refer to any kind of object in the design database.
Handle is backbone of access routine methodology and the most important new concept
introduced in this part of PLI 1.0.

Declarations

handle my_handle;•
handle clock;•
handle reset;•

Value change link(VCL)
The Value Change Link (VCL) allows a PLI application to monitor the value changes of selected
objects. The VCL can monitor value changes for the following objects.

www.asic−world.com VERILOG PLI TUTORIAL 186

Events.•
Scalar and vector registers.•
Scalar nets.•
Bit−selects of expanded vector nets.•
Unexpanded vector nets.•

The VCL cannot extract information about the following objects:

Bit−selects of unexpanded vector nets or registers.•
Part−selects.•
Memories.•
Expressions.•

Utility Routines

Interaction between the Verilog system and the user¿s routines is handled by a set of routines that
are supplied with the Verilog system. Library functions defined in PLI1.0 Perform a wide variety of
operations on the parameters passed to the system call is used to do a simulation synchronization
or to implement conditional program breakpoint .

This routines are also called Utility routines. Most of these routines are in two forms: one dealing
with the current call, or ¿instance,¿ and another dealing with an instance other than the current
one and referenced by an instance pointer.

Classification of Utiliy Routines

Routine Description

tf_getp()

tf_putp()

tf_getrealp()

tf_igetrealp()

tf_iputp()

tf_putrealp()

tf_iputrealp()

tf_getlongp()

tf_igetlongp()

tf_putlongp()

tf_iputlongp()

www.asic−world.com VERILOG PLI TUTORIAL 187

tf_strgetp()

tf_getcstringp()

tf_strdelputp()

tf_strlongdelputp()

tf_strrealdelputp()

tf_copypvc_flag()

tf_icopypvc_flag()

tf_movepvc_flag()

tf_imovepvc_flag()

tf_testpvc_flag()

tf_itestpvc_flag()

tf_getpchange()

tf_igetpchange()

tf_gettime()

tf_getlongtime()

tf_getrealtime()

tf_strgettime()

tf_gettimeunit()

tf_gettimeprecision()

tf_synchronize()

tf_rosynchronize()

tf_getnextlongtime()

tf_setdelay()

tf_setlongdelay()

tf_setrealdelay()

tf_clearalldelays()

io_printf()

io_mcdprintf()

tf_warning()

tf_error()

tf_text()

tf_message()

tf_getinstance()

tf_mipname()

tf_spname()

tf_setworkarea()

tf_getworkarea()

tf_nump()

www.asic−world.com VERILOG PLI TUTORIAL 188

tf_typed()

tf_sized()

tf_dostop()

tf_dofinish()

mc_scan_plusargs()

tf_compare_long()

tf_add_long()

tf_subtract_long()

tf_multiply_long()

tf_divide_long()

tf_long_to_real()

tf_longtime_tostr()

tf_real_tf_long()

tf_write_save()

tf_read_restart()

www.asic−world.com VERILOG PLI TUTORIAL 189

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com VERILOG PLI TUTORIAL 190

WHAT'S NEW IN VERILOG 2001
CHAPTER 18

www.asic−world.com WHAT'S NEW IN VERILOG 2001 191

Introduction
Well most of the changes in Verilog 2001 are picked from other languages. Like generate,
configuration, file operation was from VHDL. I am just adding a list of most commonly used Verilog
2001 changes. You could use the Icarus Verilog simulator for testing examples in this section.

Comma used in sensitive list
In earlier version of Verilog ,we use to use or to specify more then one sensitivity list elements. In
the case of Verilog 2001, we use comma as shown in example below.

always @ (a, b, c, d, e)

always @ (posedge clk, posedge reset)

Combinational logic sensitive list

always @ *

a = ((b&c) || (c^d));

Wire Data type
In Verilog 1995, default data type is net and its width is always 1 bit. Where as in Verilog 2001.
The width is adjusted automatically.

In Verilog 2001, we can disable default data type by `default net_type none, This basically helps in
catching the undeclared wires.

Register Data type
Register data type is called as variable, as it created lot of confusion for beginners. Also it is
possible to specify initial value to Register/variable data type. Reg data type can also be declared
as signed.
reg [7:0] data = 0;
signed [7:0] data;

New operators
<<>> : Shift left, shift right : To be used on signed data type
** : exponential power operator.

Port Declaration
module adder (
input [3:0] a,

www.asic−world.com WHAT'S NEW IN VERILOG 2001 192

input [3:0] b,
output [3:0] sum
);

module adder (a,b,y);
input wire [3:0] a,
input wire [3:0] b,
output reg [3:0] sum

This is equivalent to Verilog 1995 as given below

module adder (a,b,y);
input a;
input b;
output y;
wire a;
wire b;
reg sum;

Random Generator
In Verilog 1995, each simulator used to implement its own version of $random. In Verilog 2001,
$random is standardized, so that simulations runs across all the simulators with out any
inconsistency.

Generate Blocks

This feature has been taken from VHDL with some modification. It is possible to use for loop to
mimic multiple instants.

Multi Dimension Array.
More then two dimension supported.

There are lot of other changes, Which I plan to cover sometime later. Or may be I will mix this with
the actual Verilog tut

www.asic−world.com WHAT'S NEW IN VERILOG 2001 193

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com WHAT'S NEW IN VERILOG 2001 194

ASSERTIONS IN VERILOG
CHAPTER 19

www.asic−world.com ASSERTIONS IN VERILOG 195

Introduction
Verification with assertions refers to the use of an assertion language to specify expected behavior
in a design, Tools that evaluate the assertions relative to the design under verification

Assertion−based verification is of most use to design and verification engineers who are
responsible for the RTL design of digital blocks and systems. ABV lets design engineers capture
verification information during design. It also enables internal state, datapath, and error
precondition coverage analysis.

Simple example of assertion could be a FIFO, when ever ever FIFO is full and write happens, it is
illegal. So designer of FIFO can write assertion which checks for this condition and asserts failure.

Assertions Languages

Currently there are multiple ways available for writting assertions as shown below.

Open Verification Library (OVL).•
Formal Property Language Sugar•
SystemVerilog Assertions•

Most assertions can be written in HDL, but HDL assertions can be lengthy and complicated. This
defeats the purpose of assertions, which is to ensure the correctness of the design. Lengthy,
complex HDL assertions can be hard to create and subject to bugs themselves.

In this tutorial we will be seeing verilog based assertion (OVL) and PSL (sugar).

Advantages of using assertions

Testing internal points of the design, thus increasing observability of the design•
Simplifying the diagnosis and detection of bugs by constraining the occurrence of a bug to
the assertion monitor being checked

•

Allowing designers to use the same assertions for both simulation and formal verification.•

Implementing assertion monitors

Assertion monitors address design verification concerns and can be used as follows to increase
design confidence.

Combine assertion monitors to increase the coverage of the design (for example, in
interface circuits and corner cases).

•

www.asic−world.com ASSERTIONS IN VERILOG 196

Include assertion monitors when a module has an external interface. In this case,
assumptions on the correct input and output behavior should be guarded and verified.

•

Include assertion monitors when interfacing with third party modules, since the designer
may not be familiar with the module description (as in the case of IP cores), or may not
completely understand the module. In these cases, guarding the module with assertion
monitors may prevent incorrect use of the module.

•

Normally assertions are implemented by the designers to safe gaurd their design, so they code the
assertions into their RTL. Simple example of a assertion would be, writing into FIFO, when it is full.
Traditionally verification engineers have been using assertions in their verification enviroments
without knowing that they are assertion. For verification simple application of assertion would be
checking protocols. Example, expecting the grant of a arbiter to be asserted after one clock cycle
and before two cycles after the assertiong of request.

New few pages we will see simple examples on usage of assertions using Open Verification
Library and PSL assertions.

What You Need?

For using Open Verification Library examples you need Open Verification Library from Accellera.
For running PSL examples you need simulator that can support PSL.

Then you need bit of patience to go through the manuals to learn in details Assertions and try out
more examples.

Verification Of FIFO
Our first example is verification of synchronous FIFO. Here we will build simple testbench around
the FIFO model and use simple assertions to show how they can be used to check simple
protocol. If you have any better suggestion, please let me know.

FIFO Model

Below code is orginal code found in examples directory.
1//===
2// Function : Synchronous (single clock) FIFO
3// Coder : Deepak Kumar Tala
4// Date : 31−October−2002
5//===
6module syn_fifo (
7clk , // Clock input
8rst , // Active high reset
9wr_cs , // Write chip select

10rd_cs , // Read chipe select
11data_in , // Data input
12rd_en , // Read enable
13wr_en , // Write Enable

www.asic−world.com ASSERTIONS IN VERILOG 197

14data_out , // Data Output
15empty , // FIFO empty
16full // FIFO full
17);
18
19// FIFO constants
20parameter DATA_WIDTH = 8;
21parameter ADDR_WIDTH = 8;
22parameter RAM_DEPTH = (1 << ADDR_WIDTH);
23// Port Declarations
24input clk ;
25input rst ;
26input wr_cs ;
27input rd_cs ;
28input rd_en ;
29input wr_en ;
30input [DATA_WIDTH−1:0] data_in ;
31output full ;
32output empty ;
33output [DATA_WIDTH−1:0] data_out ;
34
35//−−−−−−−−−−−Internal variables−−−−−−−−−−−−−−−−−−−
36reg [ADDR_WIDTH−1:0] wr_pointer;
37reg [ADDR_WIDTH−1:0] rd_pointer;
38reg [ADDR_WIDTH :0] status_cnt;
39reg [DATA_WIDTH−1:0] data_out ;
40wire [DATA_WIDTH−1:0] data_ram ;
41
42//−−−−−−−−−−−Variable assignments−−−−−−−−−−−−−−−
43assign full = (status_cnt == (RAM_DEPTH−1));
44assign empty = (status_cnt == 0);
45
46//−−−−−−−−−−−Code Start−−−−−−−−−−−−−−−−−−−−−−−−−−−
47always @ (posedge clk or posedge rst)
48begin : WRITE_POINTER
49 if (rst) begin

50 wr_pointer <= 0;
51 end else if (wr_cs && wr_en) begin

52 wr_pointer <= wr_pointer + 1;
53 end

54end
55
56always @ (posedge clk or posedge rst)
57begin : READ_POINTER
58 if (rst) begin

59 rd_pointer <= 0;
60 end else if (rd_cs && rd_en) begin

61 rd_pointer <= rd_pointer + 1;
62 end

63end
64
65always @ (posedge clk or posedge rst)
66begin : READ_DATA
67 if (rst) begin

68 data_out <= 0;
69 end else if (rd_cs && rd_en) begin

70 data_out <= data_ram;
71 end

www.asic−world.com ASSERTIONS IN VERILOG 198

72end
73
74always @ (posedge clk or posedge rst)
75begin : STATUS_COUNTER
76 if (rst) begin

77 status_cnt <= 0;
78 // Read but no write.
79 end else if ((rd_cs && rd_en) && !(wr_cs && wr_en)
80 && (status_cnt != 0)) begin

81 status_cnt <= status_cnt − 1;
82 // Write but no read.
83 end else if ((wr_cs && wr_en) && !(rd_cs && rd_en)
84 && (status_cnt != RAM_DEPTH)) begin

85 status_cnt <= status_cnt + 1;
86 end

87end
88
89ram_dp_ar_aw #(DATA_WIDTH,ADDR_WIDTH)DP_RAM (
90.address_0 (wr_pointer) , // address_0 input
91.data_0 (data_in) , // data_0 bi−directional
92.cs_0 (wr_cs) , // chip select
93.we_0 (wr_en) , // write enable
94.oe_0 (1'b0) , // output enable
95.address_1 (rd_pointer) , // address_q input
96.data_1 (data_ram) , // data_1 bi−directional
97.cs_1 (rd_cs) , // chip select
98.we_1 (1'b0) , // Read enable
99.oe_1 (rd_en) // output enable

100);
101
102endmodule

Ram Model

1//===
2// Function : Asynchronous read write RAM
3// Coder : Deepak Kumar Tala
4// Date : 18−April−2002
5//===
6module ram_dp_ar_aw (
7address_0 , // address_0 Input
8data_0 , // data_0 bi−directional
9cs_0 , // Chip Select

10we_0 , // Write Enable/Read Enable
11oe_0 , // Output Enable
12address_1 , // address_1 Input
13data_1 , // data_1 bi−directional
14cs_1 , // Chip Select
15we_1 , // Write Enable/Read Enable
16oe_1 // Output Enable
17);
18

www.asic−world.com ASSERTIONS IN VERILOG 199

19parameter DATA_WIDTH = 8 ;
20parameter ADDR_WIDTH = 8 ;
21parameter RAM_DEPTH = 1 << ADDR_WIDTH;
22
23//−−−−−−−−−−−−−−Input Ports−−−−−−−−−−−−−−−−−−−−−−−
24input [ADDR_WIDTH−1:0] address_0 ;
25input cs_0 ;
26input we_0 ;
27input oe_0 ;
28input [ADDR_WIDTH−1:0] address_1 ;
29input cs_1 ;
30input we_1 ;
31input oe_1 ;
32
33//−−−−−−−−−−−−−−Inout Ports−−−−−−−−−−−−−−−−−−−−−−−
34inout [DATA_WIDTH−1:0] data_0 ;
35inout [DATA_WIDTH−1:0] data_1 ;
36
37//−−−−−−−−−−−−−−Internal variables−−−−−−−−−−−−−−−−
38reg [DATA_WIDTH−1:0] data_0_out ;
39reg [DATA_WIDTH−1:0] data_1_out ;
40reg [DATA_WIDTH−1:0] mem [0:RAM_DEPTH−1];
41
42//−−−−−−−−−−−−−−Code Starts Here−−−−−−−−−−−−−−−−−−
43// Memory Write Block
44// Write Operation : When we_0 = 1, cs_0 = 1
45always @ (address_0 or cs_0 or we_0 or data_0
46or address_1 or cs_1 or we_1 or data_1)
47begin : MEM_WRITE
48 if (cs_0 && we_0) begin

49 mem[address_0] <= data_0;
50 end else if (cs_1 && we_1) begin

51 mem[address_1] <= data_1;
52 end

53end
54
55// Tri−State Buffer control
56// output : When we_0 = 0, oe_0 = 1, cs_0 = 1
57assign data_0 = (cs_0 && oe_0 && !we_0) ? data_0_out : 8'bz;
58
59// Memory Read Block
60// Read Operation : When we_0 = 0, oe_0 = 1, cs_0 = 1
61always @ (address_0 or cs_0 or we_1 or oe_0)
62begin : MEM_READ_0
63 if (cs_0 && !we_0 && oe_0) begin

64 data_0_out <= mem[address_0];
65 end else begin

66 data_0_out <= 0;
67 end

68end
69
70//Second Port of RAM
71// Tri−State Buffer control
72// output : When we_0 = 0, oe_0 = 1, cs_0 = 1
73assign data_1 = (cs_1 && oe_1 && !we_1) ? data_1_out : 8'bz;
74// Memory Read Block 1
75// Read Operation : When we_1 = 0, oe_1 = 1, cs_1 = 1
76always @ (address_1 or cs_1 or we_1 or oe_1)
77begin : MEM_READ_1

www.asic−world.com ASSERTIONS IN VERILOG 200

78 if (cs_1 && !we_1 && oe_1) begin

79 data_1_out <= mem[address_1];
80 end else begin

81 data_1_out <= 0;
82 end

83end
84
85endmodule // End of Module ram_dp_ar_aw

Testbench Code

In below testbench code below, we are causing over flow and under flow condition. What I mean to
say is, FIFO depth is 8, so we can do 8 writes, without reading from FIFO. If we do 9 writes then
9th data over writes the content of FIFO.

Similiarly if we read from FIFO, when fifo is empty it causes underflow. This kind of things happen
when the code interface block is buggy. We can code assertion either in RTL or in the testbench.
For assertions like our example, it is better that the RTL designer codes it along with his code.

1module fifo_tb ();
2parameter DATA_WIDTH = 8;
3// Limit depth to 8
4parameter ADDR_WIDTH = 3;
5
6reg clk, rst, rd_en, wr_en;
7reg [DATA_WIDTH−1:0] data_in ;
8wire [DATA_WIDTH−1:0] data_out ;
9wire empty, full;

10integer i;
11
12initial begin
13 $monitor ("%g wr:%h wr_data:%h rd:%h rd_data:%h" , $time, wr_en, data_in, rd_en, data_out);
14 clk = 0;
15 rst = 0;
16 rd_en = 0;
17 wr_en = 0;
18 data_in = 0;
19 #5 rst = 1;
20 #5 rst = 0;
21 @ (negedge clk);
22 wr_en = 1;
23 // We are causing over flow
24 for (i = 0 ; i < 10; i = i + 1) begin

25 data_in = i;
26 @ (negedge clk);
27 end

28 wr_en = 0;
29 @ (negedge clk);
30 rd_en = 1;
31 // We are causing under flow
32 for (i = 0 ; i < 10; i = i + 1) begin

33 @ (negedge clk);

www.asic−world.com ASSERTIONS IN VERILOG 201

34 end

35 rd_en = 0;
36 #100 $finish;
37end
38
39always #1 clk = !clk;
40
41syn_fifo #(DATA_WIDTH,ADDR_WIDTH) fifo(
42.clk (clk) , // Clock input
43.rst (rst) , // Active high reset
44.wr_cs (1'b1) , // Write chip select
45.rd_cs (1'b1) , // Read chipe select
46.data_in (data_in) , // Data input
47.rd_en (rd_en) , // Read enable
48.wr_en (wr_en) , // Write Enable
49.data_out (data_out), // Data Output
50.empty (empty) , // FIFO empty
51.full (full) // FIFO full
52);
53
54endmodule

Assertion with OVL
Now that we have seen the code of FIFO and the testbench, lets see the example of using OVL to
build assertions for the FIFO. To use OVL, we need to first install the OVL package. Then we need
include the assertion file that we need to use. In our example we are using assert_fifo_index.vlib,
we use synopsys translate_off to make the synthesis tools not to read the code within synopsys
translate_off and synopsys translate_on. We want to do this, as this is simulation code and not
meant for synthesis. Next we need to enable assertions by `define OVL_ASSERT_ON. There are
many other define's that we can use to control the OVL assertion, details of each of the options
can be found in the OVL manual.

Assertion in RTL

In the below code, we use assert_fifo_index assertion, which prints error when ever there is over
flow or under flow error. We can set the various parameters like

severity_level : `OVL_ERROR, This can be set to fatal, or warning, so on.•
depth of FIFO : This is set to depth of FIFO.•
msg : Message that we want to print.•

Details on usage of this assertion could be found from OVL manual. Now to compile we need to
pass the +incdir path to VLIB install directory.

Example : Lets assume vlib is installed in home directory (/home/deepak) with vlib as name and
we are using verilog XL to compile.

www.asic−world.com ASSERTIONS IN VERILOG 202

verilog +incdir+/home/deepak/vlib verilog_file1.v verilog_file2.v

1//===
2// Function : Synchronous (single clock) FIFO
3// With Assertion
4// Coder : Deepak Kumar Tala
5// Date : 31−October−2002
6//===
7// synopsys translate_off
8`define OVL_ASSERT_ON
9`define OVL_INIT_MSG

10`include "assert_fifo_index.vlib"
11// synopsys translate_on
12module syn_fifo (
13clk , // Clock input
14rst , // Active high reset
15wr_cs , // Write chip select
16rd_cs , // Read chipe select
17data_in , // Data input
18rd_en , // Read enable
19wr_en , // Write Enable
20data_out , // Data Output
21empty , // FIFO empty
22full // FIFO full
23);
24
25// FIFO constants
26parameter DATA_WIDTH = 8;
27parameter ADDR_WIDTH = 8;
28parameter RAM_DEPTH = (1 << ADDR_WIDTH);
29// Port Declarations
30input clk ;
31input rst ;
32input wr_cs ;
33input rd_cs ;
34input rd_en ;
35input wr_en ;
36input [DATA_WIDTH−1:0] data_in ;
37output full ;
38output empty ;
39output [DATA_WIDTH−1:0] data_out ;
40
41//−−−−−−−−−−−Internal variables−−−−−−−−−−−−−−−−−−−
42reg [ADDR_WIDTH−1:0] wr_pointer;
43reg [ADDR_WIDTH−1:0] rd_pointer;
44reg [ADDR_WIDTH :0] status_cnt;
45reg [DATA_WIDTH−1:0] data_out ;
46wire [DATA_WIDTH−1:0] data_ram ;
47
48//−−−−−−−−−−−Variable assignments−−−−−−−−−−−−−−−
49assign full = (status_cnt == (RAM_DEPTH−1));
50assign empty = (status_cnt == 0);
51
52//−−−−−−−−−−−Code Start−−−−−−−−−−−−−−−−−−−−−−−−−−−
53always @ (posedge clk or posedge rst)
54begin : WRITE_POINTER

www.asic−world.com ASSERTIONS IN VERILOG 203

55 if (rst) begin

56 wr_pointer <= 0;
57 end else if (wr_cs && wr_en) begin

58 wr_pointer <= wr_pointer + 1;
59 end

60end
61
62always @ (posedge clk or posedge rst)
63begin : READ_POINTER
64 if (rst) begin

65 rd_pointer <= 0;
66 end else if (rd_cs && rd_en) begin

67 rd_pointer <= rd_pointer + 1;
68 end

69end
70
71always @ (posedge clk or posedge rst)
72begin : READ_DATA
73 if (rst) begin

74 data_out <= 0;
75 end else if (rd_cs && rd_en) begin

76 data_out <= data_ram;
77 end

78end
79
80always @ (posedge clk or posedge rst)
81begin : STATUS_COUNTER
82 if (rst) begin

83 status_cnt <= 0;
84 // Read but no write.
85 end else if ((rd_cs && rd_en) && !(wr_cs && wr_en)
86 && (status_cnt != 0)) begin

87 status_cnt <= status_cnt − 1;
88 // Write but no read.
89 end else if ((wr_cs && wr_en) && !(rd_cs && rd_en)
90 && (status_cnt != RAM_DEPTH)) begin

91 status_cnt <= status_cnt + 1;
92 end

93end
94
95ram_dp_ar_aw #(DATA_WIDTH,ADDR_WIDTH) DP_RAM (
96.address_0 (wr_pointer) , // address_0 input
97.data_0 (data_in) , // data_0 bi−directional
98.cs_0 (wr_cs) , // chip select
99.we_0 (wr_en) , // write enable

100.oe_0 (1'b0) , // output enable
101.address_1 (rd_pointer) , // address_q input
102.data_1 (data_ram) , // data_1 bi−directional
103.cs_1 (rd_cs) , // chip select
104.we_1 (1'b0) , // Read enable
105.oe_1 (rd_en) // output enable
106);
107
108// Add assertion here

www.asic−world.com ASSERTIONS IN VERILOG 204

109// synopsys translate_off
110assert_fifo_index #(
111`OVL_ERROR , // severity_level
112(RAM_DEPTH−1) , // depth
1131 , // push width
1141 , // pop width
115`OVL_ASSERT , // property type
116"my_module_err" , // msg
117`OVL_COVER_NONE , //coverage_level
1181) //simultaneous_push_pop (write and read)
119no_over_under_flow (
120.clk (clk), // Clock
121.reset_n (~rst), // Active low reset
122.pop (rd_cs & rd_en), // FIFO Write
123.push (wr_cs & wr_en) // FIFO Read
124);
125// synopsys translate_on
126endmodule

Simulator Output

First OVL message is init message, used to check if the OVL lib was included and ready.
my_module_err is message user defined message, that OVL uses in print statements.

Rest of the messages are OVERFLOW and UNDERFLOW messages.

 OVL_NOTE: `OVL_VERSION: ASSERT_FIFO_INDEX initialized
 @ fifo_tb.fifo.no_over_under_flow.ovl_init_msg_t Severity: 1, Message: my_module_err
 0 wr:0 wr_data:00 rd:0 rd_data:xx
 5 wr:0 wr_data:00 rd:0 rd_data:00
 10 wr:1 wr_data:00 rd:0 rd_data:00
 12 wr:1 wr_data:01 rd:0 rd_data:00
 14 wr:1 wr_data:02 rd:0 rd_data:00
 16 wr:1 wr_data:03 rd:0 rd_data:00
 18 wr:1 wr_data:04 rd:0 rd_data:00
 20 wr:1 wr_data:05 rd:0 rd_data:00
 22 wr:1 wr_data:06 rd:0 rd_data:00
 24 wr:1 wr_data:07 rd:0 rd_data:00
 OVL_ERROR : ASSERT_FIFO_INDEX : my_module_err : OVERFLOW :
 severity 1 : time 25 : fifo_tb.fifo.no_over_under_flow.ovl_error_t
 26 wr:1 wr_data:08 rd:0 rd_data:00
 OVL_ERROR : ASSERT_FIFO_INDEX : my_module_err : OVERFLOW :
 severity 1 : time 27 : fifo_tb.fifo.no_over_under_flow.ovl_error_t
 28 wr:1 wr_data:09 rd:0 rd_data:00
 OVL_ERROR : ASSERT_FIFO_INDEX : my_module_err : OVERFLOW :
 severity 1 : time 29 : fifo_tb.fifo.no_over_under_flow.ovl_error_t
 30 wr:0 wr_data:09 rd:0 rd_data:00
 32 wr:0 wr_data:09 rd:1 rd_data:00
 33 wr:0 wr_data:09 rd:1 rd_data:08
 35 wr:0 wr_data:09 rd:1 rd_data:09
 39 wr:0 wr_data:09 rd:1 rd_data:03
 41 wr:0 wr_data:09 rd:1 rd_data:04
 43 wr:0 wr_data:09 rd:1 rd_data:05
 45 wr:0 wr_data:09 rd:1 rd_data:06
 OVL_ERROR : ASSERT_FIFO_INDEX : my_module_err : UNDERFLOW :
 severity 1 : time 47 : fifo_tb.fifo.no_over_under_flow.ovl_error_t

www.asic−world.com ASSERTIONS IN VERILOG 205

 47 wr:0 wr_data:09 rd:1 rd_data:07
 OVL_ERROR : ASSERT_FIFO_INDEX : my_module_err : UNDERFLOW :
 severity 1 : time 49 : fifo_tb.fifo.no_over_under_flow.ovl_error_t
 49 wr:0 wr_data:09 rd:1 rd_data:08
 OVL_ERROR : ASSERT_FIFO_INDEX : my_module_err : UNDERFLOW :
 severity 1 : time 51 : fifo_tb.fifo.no_over_under_flow.ovl_error_t
 51 wr:0 wr_data:09 rd:1 rd_data:09
 52 wr:0 wr_data:09 rd:0 rd_data:09
 L36 "fifo_tb.v": $finish at simulation time 152

Assertion with PSL
Now that we have seen the example of FIFO assertion using OVL, lets see the example of using
PSL to build assertions for the FIFO. PSL assertions can be coding two ways.

inline Coding : In this method, psl assertions are coded into verilog code as comment.•
External File : In this method, psl assertions are coded into seperate file with vunit as
name.

•

inline Coding

All assertions appear within a consecutive series of comments appropriate for the context•
The first assertion statement line must begin with the psl keyword.•
Both the psl keyword and the keyword that follows it must be on the same line.•
Specify a label followed by a colon.•
Assert the behavior described in the property by using the assert or assume keyword•
Describe the behavior of the design.•
Assertions cannot be embedded in Verilog tasks, functions, or UDPs•
Example : // psl label: assert behavior;•

External File

To add assertions to an existing design without modifying the source text, as with legacy
IP.

•

To experiment with assertions before embedding them in the source file.•
When you are working in teams where the assertions are not created by the HDL author.•

vunit verification_unit_name (module_name) {
 default clock = clock_edge;
 property_name: assert behavior;
 property_name: cover {behavior};
}

For more details refer to PSL usage guide that comes with simulator.

www.asic−world.com ASSERTIONS IN VERILOG 206

Assertion in RTL

In the below code, we use psl assertion to check if no write is done when FIFO is full and also
check if no read is done when FIFO is empty.

We can code psl assertion inline with code with // or /* */. Before we write any assertion, we need
to declare the clock as in the example.

ncverilog +assert verilog_file1.v verilog_file2.v

1//===
2// Function : Synchronous (single clock) FIFO
3// With Assertion
4// Coder : Deepak Kumar Tala
5// Date : 31−October−2002
6//===
7module syn_fifo (
8clk , // Clock input
9rst , // Active high reset

10wr_cs , // Write chip select
11rd_cs , // Read chipe select
12data_in , // Data input
13rd_en , // Read enable
14wr_en , // Write Enable
15data_out , // Data Output
16empty , // FIFO empty
17full // FIFO full
18);
19
20// FIFO constants
21parameter DATA_WIDTH = 8;
22parameter ADDR_WIDTH = 8;
23parameter RAM_DEPTH = (1 << ADDR_WIDTH);
24// Port Declarations
25input clk ;
26input rst ;
27input wr_cs ;
28input rd_cs ;
29input rd_en ;
30input wr_en ;
31input [DATA_WIDTH−1:0] data_in ;
32output full ;
33output empty ;
34output [DATA_WIDTH−1:0] data_out ;
35
36//−−−−−−−−−−−Internal variables−−−−−−−−−−−−−−−−−−−
37reg [ADDR_WIDTH−1:0] wr_pointer;
38reg [ADDR_WIDTH−1:0] rd_pointer;
39reg [ADDR_WIDTH :0] status_cnt;
40reg [DATA_WIDTH−1:0] data_out ;
41wire [DATA_WIDTH−1:0] data_ram ;
42
43//−−−−−−−−−−−Variable assignments−−−−−−−−−−−−−−−
44assign full = (status_cnt == (RAM_DEPTH−1));

www.asic−world.com ASSERTIONS IN VERILOG 207

45assign empty = (status_cnt == 0);
46
47//−−−−−−−−−−−Code Start−−−−−−−−−−−−−−−−−−−−−−−−−−−
48always @ (posedge clk or posedge rst)
49begin : WRITE_POINTER
50 if (rst) begin

51 wr_pointer <= 0;
52 end else if (wr_cs && wr_en) begin

53 wr_pointer <= wr_pointer + 1;
54 end

55end
56
57always @ (posedge clk or posedge rst)
58begin : READ_POINTER
59 if (rst) begin

60 rd_pointer <= 0;
61 data_out <= 0;
62 end else if (rd_cs && rd_en) begin

63 rd_pointer <= rd_pointer + 1;
64 data_out <= data_ram;
65 end

66end
67
68always @ (posedge clk or posedge rst)
69begin : READ_DATA
70 if (rst) begin

71 data_out <= 0;
72 end else if (rd_cs && rd_en) begin

73 data_out <= data_ram;
74 end

75end
76
77always @ (posedge clk or posedge rst)
78begin : STATUS_COUNTER
79 if (rst) begin

80 status_cnt <= 0;
81 // Read but no write.
82 end else if ((rd_cs && rd_en) && !(wr_cs && wr_en)
83 && (status_cnt != 0)) begin

84 status_cnt <= status_cnt − 1;
85 // Write but no read.
86 end else if ((wr_cs && wr_en) && !(rd_cs && rd_en)
87 && (status_cnt != RAM_DEPTH)) begin

88 status_cnt <= status_cnt + 1;
89 end

90end
91
92ram_dp_ar_aw #(DATA_WIDTH,ADDR_WIDTH) DP_RAM (
93.address_0 (wr_pointer) , // address_0 input
94.data_0 (data_in) , // data_0 bi−directional
95.cs_0 (wr_cs) , // chip select
96.we_0 (wr_en) , // write enable
97.oe_0 (1'b0) , // output enable
98.address_1 (rd_pointer) , // address_q input

www.asic−world.com ASSERTIONS IN VERILOG 208

99.data_1 (data_ram) , // data_1 bi−directional
100.cs_1 (rd_cs) , // chip select
101.we_1 (1'b0) , // Read enable
102.oe_1 (rd_en) // output enable
103);
104
105// Add assertion here
106// psl default clock = (posedge clk);
107// psl ERRORwritefull: assert never {full && wr_en && wr_cs};
108// psl ERRORreadempty: assert never {empty && rd_en && rd_cs};
109
110endmodule

Simulator Output

When ever there is violation, Assertion is printed.
 0 wr:0 wr_data:00 rd:0 rd_data:xx
 5 wr:0 wr_data:00 rd:0 rd_data:00
 10 wr:1 wr_data:00 rd:0 rd_data:00
 12 wr:1 wr_data:01 rd:0 rd_data:00
 14 wr:1 wr_data:02 rd:0 rd_data:00
 16 wr:1 wr_data:03 rd:0 rd_data:00
 18 wr:1 wr_data:04 rd:0 rd_data:00
 20 wr:1 wr_data:05 rd:0 rd_data:00
 22 wr:1 wr_data:06 rd:0 rd_data:00
 24 wr:1 wr_data:07 rd:0 rd_data:00
 ncsim: *E,ASRTST (syn_fifo_psl.v,107): (time 25 NS)
 Assertion fifo_tb.fifo.ERRORwritefull has failed
 26 wr:1 wr_data:08 rd:0 rd_data:00
 28 wr:1 wr_data:09 rd:0 rd_data:00
 30 wr:0 wr_data:09 rd:0 rd_data:00
 32 wr:0 wr_data:09 rd:1 rd_data:00
 33 wr:0 wr_data:09 rd:1 rd_data:08
 35 wr:0 wr_data:09 rd:1 rd_data:09
 39 wr:0 wr_data:09 rd:1 rd_data:03
 41 wr:0 wr_data:09 rd:1 rd_data:04
 43 wr:0 wr_data:09 rd:1 rd_data:05
 45 wr:0 wr_data:09 rd:1 rd_data:06
 47 wr:0 wr_data:09 rd:1 rd_data:07
 ncsim: *E,ASRTST (syn_fifo_psl.v,108): (time 49 NS)
 Assertion fifo_tb.fifo.ERRORreadempty has failed
 49 wr:0 wr_data:09 rd:1 rd_data:08
 ncsim: *E,ASRTST (syn_fifo_psl.v,108): (time 51 NS)
 Assertion fifo_tb.fifo.ERRORreadempty has failed
 51 wr:0 wr_data:09 rd:1 rd_data:09
 52 wr:0 wr_data:09 rd:0 rd_data:09
 Simulation complete via $finish(1) at time 152 NS + 0
 fifo_tb.v:36 #100 $finish;

Post Processing
Like with any other simulation, we need to have post processing scripts to process the messages
that are printed by simulator to declare if the simulation as passed or failed.

As such, I think assertion like psl or sva, needs to have a way to specify the format of printing
assertion. Open Verilog assertion seems to be good at this, but then it is not all that powerfull as
psl or systemverilog assertions.

www.asic−world.com ASSERTIONS IN VERILOG 209

www.asic−world.com ASSERTIONS IN VERILOG 210

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com ASSERTIONS IN VERILOG 211

COMPILER DIRECTIVES
CHAPTER 20

www.asic−world.com COMPILER DIRECTIVES 212

Introduction
A compiler directive may be used to control the compilation of a Verilog description. The grave
accent mark, `, denotes a compiler directive. A directive is effective from the point at which it is
declared to the point at which another directive overrides it, even across file boundaries. Compiler
directives may appear anywhere in the source description, but it is recommended that they appear
outside a module declaration. This appendix presents those directives that are part of IEEE−1364.

As in any lanaguage, each compiler has its own way of handling command line options and
supported compiler directives in code. Below we will see some standard and common compiler
directives. For specific compiler directives, please refer to simulator manuals.

`include

The `include compiler directive lets you insert the entire contents of a source file into another file
during Verilog compilation. The compilation proceeds as though the contents of the included
source file appear in place of the `include command. You can use the `include compiler directive to
include global or commonly−used definitions and tasks, without encapsulating repeated code
within module boundaries.

`define

This compiler directive is used for defining text MACROS, this is normally defined in verilog file
"name.vh". Where name cane be module that you are coding. Since `define is compiler directive, it
can used across multiple files.

`undef

The `undef compiler directive lets you remove definitions of text macros created by the `define
compiler directive and the +define+ command−line plus option. You can use the `undef compiler
directive undefine a text macro that you use in more than one file.

`ifdef

Optionally includes lines of source code during compilation. The `ifdef directive checks that a
macro has been defined, and if so, compiles the code that follows. If the macro has not been
define, compiler compiles the code (if any) following the optional `else directive. You can control
what code is compiled by choosing whether to define the text macro, either with `define or with
+define+. The `endif directive marks the end of the conditional code.

`timescale

The `timescale compiler directive specifies the time unit and precision of the modules that follow
the directive. The time unit is the unit of measurement for time values, such as the simulation time
and delay values. The time precision specifies how simulator rounds time values. The rounded
time values that simulator uses are accurate to within the unit of time that you specify as the time

www.asic−world.com COMPILER DIRECTIVES 213

precision. The smallest−specified time precision determines the accuracy at which simulator must
run, and thus the precision affects simlation performance and memory consumption.

String Unit

s Seconds

ms Miliseconds

us Microseconds

ns Nanoseconds

ps Picoseconds

fs femtoseconds

`resetall

The `resetall directive sets all compiler directives to their default values.

`defaultnettype

The `defaultnettype directive allows the user to override the ordinary default type (wire) of implicitly
declared nets. It must be used outside a module. It specifies the default type of all nets that are
declared in modules that are declared after the directive.

`nounconnected_drive and `unconnected_drive

The `unconnected_drive and `nounconnected_drive directives cause all unconnected input ports of
modules between the directives to be pulled up or pulled down, depending on the argument of the
`unconnected_drive directive. The allowed arguments are pull0 and pull1.

www.asic−world.com COMPILER DIRECTIVES 214

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com COMPILER DIRECTIVES 215

VERILOG QUICK REFERENCE
CHAPTER 21

www.asic−world.com VERILOG QUICK REFERENCE 216

Verilog Quick Reference
This is still in very early stage, need time to add more on this.

MODULE

module MODID[({PORTID,})];
[input | output | inout [range] {PORTID,};]
[{declaration}]
[{parallel_statement}]
[specify_block]
endmodule
range ::= [constexpr : constexpr]

DECLARATIONS

parameter {PARID = constexpr,};
wire | wand | wor [range] {WIRID,};
reg [range] {REGID [range],};
integer {INTID [range],};
time {TIMID [range],};
real {REALID,};
realtime {REALTIMID,};
event {EVTID,};
task TASKID;
[{input | output | inout [range] {ARGID,};}]
[{declaration}]
begin
[{sequential_statement}]
end
endtask
function [range] FCTID;
{input [range] {ARGID,};}
[{declaration}]
begin
[{sequential_statement}]
end
endfunction

PARALLEL STATEMENTS

assign [(strength1, strength0)] WIRID = expr;

www.asic−world.com VERILOG QUICK REFERENCE 217

initial sequential_statement
always sequential_statement
MODID [#({expr,})] INSTID
([{expr,} | {.PORTID(expr),}]);
GATEID [(strength1, strength0)] [#delay]
[INSTID] ({expr,});
defparam {HIERID = constexpr,};
strength ::= supply | strong | pull | weak | highz
delay ::= number | PARID | (expr [, expr [, expr]])

GATE PRIMITIVES

and (out, in1, ..., inN);
nand (out, in1, ..., inN);
or (out, in1, ..., inN);
nor (out, in1, ..., inN);
xor (out, in1, ..., inN);
xnor (out, in1, ..., inN);
buf (out1, ..., outN, in);
not (out1, ..., outN, in);
bufif1 (out, in, ctl);
bufif0 (out, in, ctl);
notif1 (out, in, ctl);
notif0 (out, in, ctl);
pullup (out);
pulldown (out);
[r]pmos (out, in, ctl);
[r]nmos (out, in, ctl);
[r]cmos (out, in, nctl, pctl);
[r]tran (inout, inout);
[r]tranif1 (inout, inout, ctl);
[r]tranif0 (inout, inout, ctl);

SEQUENTIAL STATEMENTS

;
begin[: BLKID
[{declaration}]]
[{sequential_statement}]
end
if (expr) sequential_statement

www.asic−world.com VERILOG QUICK REFERENCE 218

[else sequential_statement]
case | casex | casez (expr)
[{{expr,}: sequential_statement}]
[default: sequential_statement]
endcase
forever sequential_statement
repeat (expr) sequential_statement
while (expr) sequential_statement
for (lvalue = expr; expr; lvalue = expr)
sequential_statement
#(number | (expr)) sequential_statement
@ (event [{or event}]) sequential_statement
lvalue [
lvalue [
−> EVENTID;
fork[: BLKID
[{declaration}]]
[{sequential_statement}]
join
TASKID[({expr,})];
disable BLKID | TASKID;
assign lvalue = expr;
deassign lvalue;
lvalue ::=
ID[range] | ID[expr] | {{lvalue,}}
event ::= [posedge | negedge] expr

SPECIFY BLOCK

specify_block ::= specify
{specify_statement}
endspecify

SPECIFY BLOCK STATEMENTS

specparam {ID = constexpr,};
(terminal => terminal) = path_delay;
((terminal,} *> {terminal,}) = path_delay;
if (expr) (terminal [+|−]=> terminal) = path_delay;
if (expr) ({terminal,} [+|−]*> {terminal,}) =
path_delay;

www.asic−world.com VERILOG QUICK REFERENCE 219

[if (expr)] ([posedge|negedge] terminal =>
(terminal [+|−]: expr)) = path_delay;
[if (expr)] ([posedge|negedge] terminal *>
({terminal,} [+|−]: expr)) = path_delay;
$setup(tevent, tevent, expr [, ID]);
$hold(tevent, tevent, expr [, ID]);
$setuphold(tevent, tevent, expr, expr [, ID]);
$period(tevent, expr [, ID]);
$width(tevent, expr, constexpr [, ID]);
$skew(tevent, tevent, expr [, ID]);
$recovery(tevent, tevent, expr [, ID]);
tevent ::= [posedge | negedge] terminal
[&&& scalar_expr]
path_delay ::=
expr | (expr, expr [, expr [, expr, expr, expr]])
terminal ::= ID[range] | ID[expr]

EXPRESSIONS

primary
unop primary
expr binop expr
expr ? expr : expr
primary ::=
literal | lvalue | FCTID({expr,}) | (expr)

UNARY OPERATORS

+, − Positive, Negative
! Logical negation
~ Bitwise negation
&, ~& Bitwise and, nand
|, ~| Bitwise or, nor
^, ~^, ^~ Bitwise xor, xnor

BINARY OPERATORS

Increasing precedence:
?: if/else
|| Logical or
&& Logical and
| Bitwise or

www.asic−world.com VERILOG QUICK REFERENCE 220

^, ^~ Bitwise xor, xnor
& Bitwise and
==, != , ===, !== Equality
, >= Inequality
<> Logical shift
+, − Addition, Subtraction
*, /, % Multiply, Divide, Modulo

SIZES OF EXPRESSIONS

unsized constant 32
sized constant as specified
i op j +,−,*,/,%,&,|,^,^~ max(L(i), L(j))
op i +, −, ~ L(i)
i op j ===, !==, ==, !=
&&, ||, >, >=,
op i &, ~&, |, ~|, ^, ~^ 1
i op j >>, << L(i)
i ? j : k max(L(j), L(k))
{i,...,j} L(i) + ... + L(j)
{i{j,...k}} i * (L(j)+...+L(k))
i = j L(i)

SYSTEM TASKS
* indicates tasks not part of the IEEE standard
but mentioned in the informative appendix.

INPUT

$readmemb("fname", ID [, startadd [, stopadd]]);
$readmemh("fname", ID [, startadd [, stopadd]]);
$sreadmemb(ID, startadd, stopadd {, string});
$sreadmemh(ID, startadd, stopadd {, string});

OUTPUT

$display[defbase]([fmtstr,] {expr,});
$write[defbase] ([fmtstr,] {expr,});
$strobe[defbase] ([fmtstr,] {expr,});
$monitor[defbase] ([fmtstr,] {expr,});
$fdisplay[defbase] (fileno, [fmtstr,] {expr,});
$fwrite[defbase] (fileno, [fmtstr,] {expr,});

www.asic−world.com VERILOG QUICK REFERENCE 221

$fstrobe(fileno, [fmtstr,] {expr,});
$fmonitor(fileno, [fmtstr,] {expr,});
fileno = $fopen("filename");
$fclose(fileno);
defbase ::= h | b | o

TIME

$time "now" as TIME
$stime "now" as INTEGER
$realtime "now" as REAL
$scale(hierid) Scale "foreign" time value
$printtimescale[(path)] Display time unit & precision
$timeformat(unit#, prec#, "unit", minwidth)
Set time %t display format

SIMULATION CONTROL

$stop Interrupt
$finish Terminate
$save("fn") Save current simulation
$incsave("fn") Delta−save since last save
$restart("fn") Restart with saved simulation
$input("fn") Read commands from file
$log[("fn")] Enable output logging to file
$nolog Disable output logging
$key[("fn")] Enable input logging to file
$nokey Disable input logging
$scope(hiername) Set scope to hierarchy
$showscopes Scopes at current scope
$showscopes(1) All scopes at & below scope
$showvars Info on all variables in scope
$showvars(ID) Info on specified variable
$countdrivers(net)>1 driver predicate
$list[(ID)] List source of [named] block
$monitoron Enable $monitor task
$monitoroff Disable $monitor task
$dumpon Enable val change dumping
$dumpoff Disable val change dumping
$dumpfile("fn") Name of dump file
$dumplimit(size) Max size of dump file

www.asic−world.com VERILOG QUICK REFERENCE 222

$dumpflush Flush dump file buffer
$dumpvars(levels [{, MODID | VARID}])
Variables to dump
$dumpall Force a dump now
$reset[(0)] Reset simulation to time 0
$reset(1) Reset and run again
$reset(0|1, expr) Reset with reset_value*$reset_value Reset_value of last $reset
$reset_count # of times $reset was used

MISCELLANEOUS

$random[(ID)]
$getpattern(mem) Assign mem content
$rtoi(expr) Convert real to integer
$itor(expr) Convert integer to real
$realtobits(expr) Convert real to 64−bit vector
$bitstoreal(expr) Convert 64−bit vector to real

ESCAPE SEQUENCES IN FORMAT STRINGS

\n, \t, \\, \" newline, TAB, "\", """
\xxx character as octal value
%% character "%"
%[w.d]e, %[w.d]E display real in scientific form
%[w.d]f, %[w.d]F display real in decimal form
%[w.d]g, %[w.d]G display real in shortest form
%[0]h, %[0]H display in hexadecimal
%[0]d, %[0]D display in decimal
%[0]o, %[0]O display in octal
%[0]b, %[0]B display in binary
%[0]c, %[0]C display as ASCII character
%[0]v, %[0]V display net signal strength
%[0]s, %[0]S display as string
%[0]t, %[0]T display in current time format
%[0]m, %[0]M display hierarchical name

LEXICAL ELEMENTS

hierarchical identifier ::= {INSTID .} identifier
identifier ::= letter | _ { alphanumeric | $ | _}
escaped identifer ::= \ {nonwhite}
decimal literal ::=

www.asic−world.com VERILOG QUICK REFERENCE 223

[+|−]integer [. integer] [E|e[+|−] integer]
based literal ::= integer " base {hexdigit | x | z}
base ::= b | o | d | h
comment ::= // comment newline
comment block ::= /* comment */

www.asic−world.com VERILOG QUICK REFERENCE 224

NOTES
−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

www.asic−world.com VERILOG QUICK REFERENCE 225

VERILOG IN ONE DAY
CHAPTER 22

www.asic−world.com VERILOG IN ONE DAY 226

Introduction
I wish I could learn Verilog in one day, well that's every new learners dream. In next few pages I
have made an attempt to make this dream a real one for those new learners. There will be some
theory, some examples followed by some exercise. Only requirement for this "Verilog in One Day"
is that you should be aware of at least one programming language. One thing that makes Verilog
and software programming languages different is that, in Verilog execution of different blocks of
code is concurrent, where as in software programming language it is sequential. Of course this
tutorial is useful for those who have some background in Digital design back ground.

Life before Verilog was life of Schematics, where any design, let it be of any complexity use to
designed thought schematics. This method of schematics was difficult to verify and was error
prone, thus resulting in lot of design and verify cycles.

Whole of this tutorial is based around a arbiter design and verification. We will follow the typical
design flow found here.

Specs•
High level design•
Low level design or micro design•
RTL coding•
Verification•
Synthesis.•

For anything to be designed, we need to have the specs. So lets define specs.

Two agent arbiter.•
Active high asynchronous reset.•
Fixed priority, with agent 0 having highest priority.•
Grant will be asserted as long as request is asserted.•

Once we have the specs, we can draw the block diagram. Since the example that we have taken
is a simple one, For the record purpose we can have a block diagram as shown below.

Block diagram of arbiter

www.asic−world.com VERILOG IN ONE DAY 227

Normal digital design flow dictates that we draw a stated machine, from there we draw the truth
table with next state transition for each flip−flop. And after that we draw kmaps and from kmaps we
can get the optimized circuit. This method works just fine for small design, but with large designs
this flow becomes complicated and error prone.

You may refer to the digital section to understand this flow (I think this flow tutorial in Digital
section is still under construction).

Low level design

Here we can add the signals at the sub module level and also define the state machine if any in
greater detail as shown in the figure below.

Modules
If you look at the arbiter block, we can see that it has got a name arbiter and input/output ports.
Since Verilog is a HDL, it needs to support this, for this purpose we have reserve word "module".

module arbiter is same as block arbiter, Each module should follow with port list as shown in code
below.

Code of module "arbiter"

If you look closely arbiter block we see that there are arrow marks, (incoming for inputs and
outgoing for outputs). In Verilog after we have declared the module name and port names, We can
define the direction of each port (In Verilog 2001 we can define ports and port directions at one
place), as shown in code below.

www.asic−world.com VERILOG IN ONE DAY 228

1module arbiter (
2clock , // clock
3reset , // Active high, syn reset
4req_0 , // Request 0
5req_1 , // Request 1
6gnt_0 , // Grant 0
7gnt_1
8);
9//−−−−−−−−−−−−−Input Ports−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10input clock ;
11input reset ;
12input req_0 ;
13input req_1 ;
14//−−−−−−−−−−−−−Output Ports−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15output gnt_0 ;
16output gnt_1 ;

As you can see, we have only two types of ports, input and output. But in real life we can have
bi−directional ports also. Verilog allows us to define bi−directional ports as "inout"

Example −

inout read_enable;

One make ask " How do I define vector signals", Well Verilog do provide simple means to declare
this too.

Example −

inout [7:0] address;

where left most bit is 7 and rightmost bit is 0. This is little endian conversion.

Summary

We learn how a block/module is defined in Verilog•
We learn how to define ports and port directions.•
How to declare vector/scalar ports.•

Data Type
Oh god what this data type has to do with hardware ?. Well nothing special, it just that people
wanted to write one more language that had data types (need to rephrase it!!!!). No hard feelings
:−).

Actually there are two types of drivers in hardware...

www.asic−world.com VERILOG IN ONE DAY 229

What is this driver ?

Driver is the one which can drive a load. (guess, I knew it).

Driver that can store a value (example flip−flop).•
Driver that can not store value, but connects two points (example wire).•

First one is called reg data type and second data type is called wire. You can refer to this page for
getting more confused.

There are lot of other data types for making newbie life bit more harder. Lets not worry about them
for now.

Examples :

wire and_gate_output;
reg d_flip_flop_output;
reg [7:0] address_bus;

Summary

wire data type is used for connecting two points.•
reg data type is used for storing values.•
May god bless rest of the data types.•

Operators
If you have seen the pre−request for this one day nightmare, you must have guessed now that
Operators are same as the one found in any another programming language. So just to make life
easies, all operators like in the list below are same as in C language.

Operator Type Operator Symbol Operation Performed

Arithmetic * Multiply

/ Division

+ Add

− Subtract

% Modulus

+ Unary plus

− Unary minus

www.asic−world.com VERILOG IN ONE DAY 230

Logical ! Logical negation

&& Logical and

|| Logical or

Relational > Greater than

< Less than

>= Greater than or equal

<= Less than or equal

Equality == Equality

!= inequality

Reduction & Bitwise negation

~& nand

| or

~| nor

^ xor

^~ ~^ xnor

Shift >> Right shift

<< Left shift

Concatenation { } Concatenation

Conditional ? conditional

Example −

a = b + c ; // That was very easy•
a = 1 << 5; // Hum let me think, ok shift '1' left by 5 position.•
a = !b ; // Well does it invert b???•
a = ~b ; // How many times do you want to assign to 'a', it could cause multiple−drivers.•

Summary

Lets attend C language training again.•

Control Statements
Did we come across "if else"," repeat", "while", "for" "case". Man this is getting boring, Looks like
Verilog was picked from C language. Functionality of Verilog Control statement is same as C
language. Since Verilog is a HDL (Hardware Description Language), this control statements
should translate to Hardware, so better be careful when you use control statements. We will see
this in detail in synthesis sub−section.

www.asic−world.com VERILOG IN ONE DAY 231

if−else

if−else statement is used for checking a condition to execute a portion of code. If condition does
not satisfy, then execute code in other portion of code as shown in code below.

1if (enable == 1'b1) begin
2 data = 10; // Decimal assigned
3 address = 16'hDEAD; // Hexa decimal
4 wr_enable = 1'b1; // Binary
5end else begin
6 data = 32'b0;
7 wr_enable = 1'b0;
8 address = address + 1;
9end

One could use any operators in the condition checking as in the case of C language. If needed we
can have nested if else statements, statements without else is also ok, but then it has its own
problem when modeling combinational logic, if statement without else results in a Latch (this is not
always true).

case

Case statement is used where we have one variable, which needs to be checked for multiple
values. Like a address decoder, where input is address and it needs to checked for all the values
that it can take. In Verilog we have casex and casez, This are good for reading, but for
implementation purpose just avoid them. You can read about them in regular Verilog text.

Any case statement should begin with case reserved word, and end with encase reserved word. It
is always better to have default statement, as this always takes care of un−covered case. Like in
FSM, if all cases are not covered and FSM enters into a un−covered statement, this could result in
FSM hanging. If we default statement with return to idle state, could bring FSM to safe state.

1case(address)
2 0 : $display ("It is 11:40PM");
3 1 : $display ("I am feeling sleepy");
4 2 : $display ("Let me skip this tutorial");
5 default : $display ("Need to complete");
6endcase

Looks like address value was 3 and so I am still writing this tutorial. One thing that is common to
if−else and case statement is that, if you don't cover all the cases (don't have else in if−else or
default in case), and you are trying to write a combination statement, the synthesis tool will infer
Latch.

While

While statement checks if a condition results in Boolean true and executed the code within the
begin and end statements. Normally while loop is not used for real life modeling, but used in Test
benches

www.asic−world.com VERILOG IN ONE DAY 232

1while (free_time) begin
2 $display ("Continue with webpage development");
3end

As long as free_time variable is set, code within the begin and end will be executed. i.e print
"Continue with web development". Lets looks at a more strange example, which uses most of the
constructs of Verilog. Well you heard it right. Verilog has very few reserve words then VHDL, and
in this few, we use even lesser few for actual coding. So good of Verilog....right.

1module counter (clk,rst,enable,count);
2input clk, rst, enable;
3output [3:0] count;
4reg [3:0] count;
5
6always @ (posedge clk or posedge rst)
7if (rst) begin
8 count <= 0;
9end else begin : COUNT

10 while (enable) begin

11 count <= count + 1;
12 disable COUNT;
13 end

14end
15
16endmodule

We will visit this code later

for loop

"for−loop" statement in Verilog is very close to C language "for−loop" statement, only difference is
that ++ and −− operators is not supported in Verilog. So we end up using var = var + 1, as shown
below.

1for (i = 0; i < 16; i = i +1) begin
2 $display ("Current value of i is %d" , i);
3end

Above code prints the value of i from 0 to 15. Using of for loop for RTL, should be done only after
careful analysis.

repeat

"repeat" statement in Verilog is same as for loop seen earlier. Below code is simple example of a
repeat statement.

www.asic−world.com VERILOG IN ONE DAY 233

1repeat (16) begin
2 $display ("Current value of i is %d" , i);
3 i = i + 1;
4end

Above example output will be same as the for−loop output. One question that comes to mind, why
the hell someone would like to use repeat for implementing hardware.

Summary

while, if−else, case(switch) statements are same as C language.•
if−else and case statements requires all the cases to covered for combinational logic.•
for−loop same as C, but no ++ and −− operators.•

Variable Assignment
In digital there are two types of elements, combinational and sequential. Of course we know this.
But the question is "how do we model this in Verilog". Well Verilog provides two ways to model the
combinational logic and only one way to model sequential logic.

Combination elements can be modeled using assign and always statements.•
Sequential elements can be modeled using only always statement.•
There is third type, which is used in test benches only, it is called initial statement.•

Before we discuss about this modeling, lets go back to the second example of while statement. In
that example we had used lot of features of Verilog. Verilog allows user to give name to block of
code, block of code is something that starts with reserve word "begin" and ends with reserve word
"end". Like in the example we have "COUNT" as name of the block. This concept is called named
block.

We can disable a block of code, by using reserve word "disable ". In the above example, after the
each incremented of counter, COUNT block of code is disabled.

Initial Blocks

initial block as name suggests, is executed only once and that too, when simulation starts. This is
useful in writing test bench. If we have multiple initial blocks, then all of them are executed at
beginning of simulation.

Example

www.asic−world.com VERILOG IN ONE DAY 234

1initial begin
2 clk = 0;
3 reset = 0;
4 req_0 = 0;
5 req_1 = 0;
6end

In the above example at the beginning of simulation, (i.e when time = 0), all the variables inside
the begin and end and driven zero.

Always Blocks
As name suggest, always block executes always. Unlike initial block, which executes only once, at
the beginning of simulation. Second difference is always block should have sensitive list or delay
associated with it.

Sensitive list is the one which tells the always block when to execute the block of code, as shown
in figure below. @ symbol after the always reserved word indicates that always block will be
triggers "at" condition in parenthesis after symbol @.

One important note about always block is, it can not drive a wire data type, but can drive reg and
integer data type.

1always @ (a or b or sel)
2begin

3 y = 0;
4 if (sel == 0) begin

5 y = a;
6 end else begin

7 y = b;
8 end

9end

Above example is a 2:1 mux, with input a and b, sel is the select input and y is mux output. In any
combination logic output is changes, whenever the input changes. This theory when applied to
always blocks means that, the code inside always block needs to be executed when ever the input
variables (or output controlling variables) change. This variables are the one which are included in
the sensitive list, namely a, b and sel.

There are two types of sensitive list, the one which are level sensitive (like combinational circuits)
and the one which are edge sensitive (like flip−flops). below the code is same 2:1 Mux but the
output y now is output of a flip−flop.

www.asic−world.com VERILOG IN ONE DAY 235

1always @ (posedge clk)
2if (reset == 0) begin
3 y <= 0;
4end else if (sel == 0) begin
5 y <= a;
6end else begin
7 y <= b;
8end

We normally have reset to flip−flops, thus every time clock makes transition from 0 to 1 (posedge),
we check if reset is asserted (synchronous reset), and followed by normal logic. If look closely we
see that in the case of combinational logic we had "=" for assignment, and for the sequential block
we had "<=" operator. Well "=" is block assignment and "<=" is nonblocking assignment. "="
executes code sequentially inside a begin and end, where as nonblocking "<=" executes in
parallel.

We can have always block without sensitive list, in that case we need to have delay as shown in
code below.

1always begin
2 #5 clk = ~clk;
3end

#5 in front of the statement delays the execution of the statement by 5 time units.

Assign Statement

assign statement is used for modeling only combinational logic and it is executed continuously. So
assign statement called continuous assignment statement as there is no sensitive list.

1assign out = (enable) ? data : 1'bz;

Above example is a tri−state buffer. When enable is 1, data is driven to out, else out is pulled to
high−impedance. We can have nested conditional operator to construct mux, decoders and
encoders.

1assign out = data;

Above example is a simple buffer.

Task and Function
Just repeating same old thing again and again, Like any other programming language, Verilog
provides means to address repeated used code, this are called Task and Functions. I wish I had
something similar for the webpage, just call it to print this programming language stuff again and
again.

www.asic−world.com VERILOG IN ONE DAY 236

Below code is used for calculating even parity.

1function parity;
2input [31:0] data;
3integer i;
4begin

5 parity = 0;
6 for (i= 0; i < 32; i = i + 1) begin

7 parity = parity ^ data[i];
8 end

9end
10endfunction

Function and task have same syntax, few difference is task can have delays, where function can
not have any delay. Which means function can be used for modeling combination logic.

Test Benches
Ok, now we have code written according to the design document, now what?

Well we need to test it to see if it works according to specs. Most of the time, its same as we use to
do in digital labs in college days. Drive the inputs, match the outputs with expected values. Lets
look at the arbiter testbench.

1module arbiter_tb;
2
3reg clock, reset, req0,req1;
4wire gnt0,gnt1;
5
6initial begin
7
8 $monitor ("req0=%b, req1=%b, gnt0=%b,gnt1=%b" , req0,req0,gnt0,gnt1);
9 clock = 0;

10 reset = 0;
11 req0 = 0;
12 req1 = 0;
13 #5 reset = 1;
14 #15 reset = 0;
15 #10 req0 = 1;S
16 #10 req0 = 0;
17 #10 req1 = 1;
18 #10 req1 = 0;
19 #10 {req0,req1} = 2'b11;
20 #10 {req0,req1} = 2'b00;
21 #10 $finish;
22end
23

www.asic−world.com VERILOG IN ONE DAY 237

24always begin
25
26 #5 clock = !clock; // Generate clock
27end
28
29arbiter U0 (
30.clock (clock),
31.reset (reset),
32.req_0 (req0),
33.req_1 (req1),
34.gnt_0 (gnt0),
35.gnt_1 (gnt1)
36);
37
38endmodule

Its looks like we have declared all the arbiter inputs as reg and outputs as wire, well that's true. We
are doing this as test bench needs to drive inputs and needs to monitor outputs.

After we have declared all the needed variables, we initialize all the inputs to know state, we do
that in the initial block. After initialization, we assert/de−assert reset, req0, req1 in the sequence
we want to test the arbiter. Clock is generated with always block.

After we have done with the testing, we need to stop the simulator. Well we use $finish to
terminate simulation. $monitor is used to monitor the changes in the signal list and print them in
the format we want.

 req0=0, req1=0, gnt0=x,gnt1=x
 req0=0, req1=0, gnt0=0,gnt1=0
 req0=1, req1=0, gnt0=0,gnt1=0
 req0=1, req1=0, gnt0=1,gnt1=0
 req0=0, req1=0, gnt0=1,gnt1=0
 req0=0, req1=1, gnt0=1,gnt1=0
 req0=0, req1=1, gnt0=0,gnt1=1
 req0=0, req1=0, gnt0=0,gnt1=1
 req0=1, req1=1, gnt0=0,gnt1=1
 req0=1, req1=1, gnt0=1,gnt1=0
 req0=0, req1=0, gnt0=1,gnt1=0

I have used Icarus Verilog simulator to generate the above output.

www.asic−world.com VERILOG IN ONE DAY 238

	veritut.html

