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Abstract-The primary goal of pattern recognition is supewised or unsupervised classification. Among the various frameworks in 
which pattern recognltion has been traditionally formulated, the statistical approach has been most intensively studied and used in 
practice. More recently, neural network techniques and methods imported from statistical learning thsory have bean receiving 
increasing attention. The design of a recognition system requires carefut attention to the following issues: definition of pattern classes, 
sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection 
of training and test samples, and performance evaluation. In spite of almost 50 years 01 research and development in this field, the 
general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging 
applications. such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, 
require robust and efflclent pattern recognition techniques. The objective of this review paper is to summarize and compare some of 
the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are 
at the forefront of this exciting and challenging field. 

Index Terms-Statistical pattern recognition, classification, clustering, feature extraction, fsaturo selection, error estimation, classifier 
combination. neural networks. 

+ 
1 ~NTRODUCTION 

Y the time they are five years old, most children can B recognize digits and letters. Small charactcrs, largc 
characters, handwritten, machine printed, or rotated-all 
are easily rccogiiizcd by the young. The characters map be 
written on a cluttered background, on crumpled paper [ir 

inay even be partially occluded. We take this ability fnr 
grantcd until wc facc the task of teaching a machine how to 
do the same. Pattern recngnition is thc study of haw 
machines can ohserve thhc environment, learn to distinguish 
patterns of intcrcst from their background, and make sound 
and reasonable decisions about the catcgories of the 
patterns. Jn spite of almost 50 years of research, design of 
a general purpusc machinc pattcrii recognizer remains an 
elusive goal. 

The best pattern rccognizors in most instances are 
humans, yr?t we do not understand how humans recognize 
patterns. Ross [140] emphasizes the work of Nnbcl Laureate 
I Jerbert Simon whosc central finding was that pattern 
rccognition is critical in most liitman decision making tasks: 
"The more relevant patterns at your disposal, the better 
your decisions will be. This is hopeful news to proponents 
of artificial intelligencu, sincc computers can surely be 
taught to rccogiike patterns. Indeed, successful. computer 
programs that help banks score credit applicants, help 
doctors diagnose disease and help pilots land airplanes 

depend in some way on pattern recognition ... We need to 
pay inuch morc explicit attciition to teaching pattern 
recognition." Our goal here is to introduce pattern recogni- 
tion as the best pnssible way of utilizing available sensors, 
processors, and domain knowledge to make decisions 
automa tically. 

1-1 What is Pattern ReeqrMon? 
Automatic (machino) rccognition, duscription, clnssificrl- 
tion, and grouping of patterns are important problems in a 
var iety of engineering and scientific disciplines such RS 

biology, psychology, medicine, marketing, computer vision, 
artificial intclligcnce, a i d  remote sensing. But what is a 
pattern? Watanabe [1633 defines a pattern "as oppnsitc of a 
chaos; it is an entity, vaguely defined, that could be given a 
iiamo." For cxamnplc, a pattem could be R fingerprint image, 
a handwrilten cursive word, a human face, ui' a speech 
signal, Given a pattern, its recognition/classi~icatioi~ may 
consist of one of the following two tasks [163]: 1) supervised 
classification (e.g., discriminant analysis) in which the input 
pattern is identified as a member of a predefined. class, 
2) unsupcrvisad classification (e.g., clustering) in which the 
pattern i s  assigned to a hitherto unknown class. Notc that 
the recognition problem here is being posed ns a classifica- 
tion or catcgoriza tion task, whore the classes are either 
defined by the system designer (in supervised classifica- 
tion) or are leamed based on the similarity of patterns (in 
unsuperviscd classiFication). 

Interest in the area [if pattern recognition has been 
renewcd rcccnkly duc k o  cmcrging applications which are 
not only challenging but also computationally more 
demanding (see Table I). These applications include data 
mining (identifying a "pattern," e.g., correlation, or an 
outlier in millions of multidiincnsioiial pattcriis), document 
classification (efficiently searching text documents), finan- 
cial forecasting, organization and retrieval of multimedia 
databascs, and biometrics (personal identification based 011 
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TABLE 1 
Examples of Pattern Recognition Applications 

various physical attributes such as h c c  aiid fingerprints). 
Picard [I251 .has identificd n novcl application of pattern 
rccognitioii, called affective computing which will give a 
computer the ability to recnpiizc aiid cxpress emotions, to 
respond intelligcntly tr) human emotion, and to employ 
mcchanisms of cinotion that contribute to ratinrial dccisioii 
making. A cotnmnn charactcristic of a number of these 
applications is thaL the available fcatmes (typically, in the 
thrnisands) arc not usually suggested by domain cxpcrts, 
but must be extracted and optimized by data-driven 
procedures. 

'['he rapidly growing and available computing power, 
whilc enabling faster processing nf hug" d a h  suts, has also 
facilitated the use OT elaborate and divcrsc methods for data 
analysis and classification. At the same time, demands on 
automatic pattern recognition syslcms are rising enor- 
inotisly dire to the availability of largc databases and 
stringent pcrformancc rcquiremeizts (speed, accuracy, mid 
cost). In many of the emerging applications, it is clcar that 
110 single approach for classification is "optimal" and that 
multiple methods and apprriachcs have to be used. 
Cunscqucntly, combining several sensing modalikics and 
classifiers is now a comtnoiily uscd prrlcticc in pattern 
recognition. 

Thc dcsign of R pattern recognition system csscntially 
involvcs tlic following three aspects: I) data acquisition aiid 
pi.eprocessing, 2) data representation, mid 3) decision 
making. The problem domain dictatcs thc choice of 
seiisoi:(s), preprocessing tediniquc, ruprcsentation scheme, 
and khc dccision making model. Tt is genwdly agrccd tlint R 

well-defined and sufficiently colisbrained recognition pro- 
blem (small intraclass variations and large inlerclass 
varialinnsj will luad to R crimpact pattern rcpreseiitiition 
and a simple docision making stratcgy. Lcnriiing from a set 
nf oxnmplcs (training set) is an important and desired 
atrributc of most pattcrn rccognition systems. The four best 
known approaches for pattern recognition are: 1) templak 
matching, 2 )  statistical classification, 3)  syntactic or struc- 
tural matching, and 4) neural networks. These modcls arc 
not neccssarily independent and sometimes the same 
pattern recognition method exists with different interprctn- 
tioiis. Attempts have been made to design hybrid systciiis 
involving multiple models [57]. A brief description and 
comparison of these apprnachcs is given bclow and 
summarized iin Table 2. 

1.2 Template Matching 
( h e  nf the siinplcsl and earliest approaches to pattern 
rccognition is based on template matching. Matching is R 

gcncric operation in pattern recognition which Is used t o  
dctcrniinc tlw similarity between two entities (p in t s ,  
curves, or shapes) of the same type. Tn template matching, 
R template (typically, il 2n shape) or a prototypu of the 
pattern to be recognized is available. The p a t k m  to be 
recognized is matched against the stored template while 
taking into accoiiiit all allowable posc (translation and 
rotation) aizd scale changes. 'I'hc similarity measurc, often n 
coi:reliition, may be nptimizod bascd on the available 
training sct. Often, the template itself is learned from the 
training sct. Template matching i s  computationally dc- 
mending, but the availability of faster processors has now 
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TABLE 2 
Pattern Recognition Models 

[I- - 

t ---- I - - -  

made this approach more feasible. The rigid template 
matching mcntioncd above, whilc cffcctive in some 
applicnlion domains, 1x1s a number of disadvantages. For 
instance, it would fail if the patterns are distortcd duc to the 
imaging prticcss, viewpoint change, or large intraclass 
variations among tlie pat terns. Deformable template models 
[69] or ruibbcr slicct defornnations [9] can be uscd to match 
patterns when thc dcfurmatioii cannot be easily explained 
or mndclcd directly. 

1.3 Statistical Approach 
In thc statistical approach, each paitcrn is represented in 
terms of r i  Ccaturcs or ineasui:ements and is viewed HS a 
point in a d-dimensional space. Tho goal is to choose those 
features that allow pattern vectors belonging to different 
categoi'ies to occupy compact and disjoint regions in a 
rl-dimcnsionnl feature space. 'l'hc effcctiveness of the 
reprcscntntioii space (feature sct) is determined by hnw 
wcll patteriis fi4om different classcs can bc separated, Given 
R set of training patterns from each class, the objective is to 
establish decision boundaries in the feature space which 
separate patterns bclonging to different classes. In the 
statistical decision theoretic approach, the decision bound- 
aries are deteriniiicd by the probability distribu~ions of  tlie 
patterns belonging to each class, which musk cithcr be 
specified or learned [41], [a]. 

One can also takc a discriminant analysis-bascd ap- 
prtmch to classification: First a paramclric form of tlie 
decision boundary (e.g., linear or quadratic) is specified; 
then the "best" decision boundary o f  Lhc specified form is 
found based on the classification of tminiiig patterns. Such 
bouudarics cart be constructed using, for example, a iiiean 
squared error criterion. '['hc direct boundary coizstruction 
approaches are supported by Vaynik's philosophy [162]: "If 
you pr)sscss a rcstricted amount of informahn for solving 
Liome problem, try to solve the problem directly and never 
sulve a more general problem as an intermediate step. It is 
possible that the available information is sufficient for a 
direct solution but is insufficicnb for solving a more general 
intermediate problem." 

Itwogriitinri h d i i m  Typical Clitcliuii 
__ ~- -7IEI .5 ~ .. 

Corw1aI:iou ~ r l i s l  nricr i i i rnw i'c C l ~ ~ s i i i m r i o ~ i  wriw 

Diswiriimaiit fuiictivri 1 Classiiiixriciii wriic 
- .  -hp 

A<!cr!II1.nrlc~ WImr + h.Ic:tu squari: error 

liiilcn, gminin:.w 

. 

Nrvt.iwk hict,iim 

I .4 Syntactic Approach 
'in many rccognition problems involving coniplcx patterns, 
it is inorc appropriate to adopt a hierarctiical pcrspective 
where a pattorn is viewed as being composed of simple 
subpattcrns which ace themselves built from yct simpler 
subpattcrns [56], [121]. The simplest/clementary subpat- 
terns to bc rccognizcd are called prinliliucs and thc given 
complex pattern is represented jn terms of the interrclation- 
ships bctwccn these primitives. In syntactic pattcrn recog- 
nition, a formal analogy is drawn butwccn tlie structure of 
patterns and  the syntax o f  a lnnguagc. The patterns arc 
viewed as sentences bclonging to a language, primitives arc 
viewed as the alphabet cif  the language, and the sentences 
are generated according to a grammar. Thus, a largc 
collecLiun of complex patterns can be described by a small 
number of primitives and grilmmatical rules. 'lhc grainmar 
for each pattern class inust be inferred from the available 
traiuing smiplcs. 

Structural pattern recognition is intuitively appealing 
bccausu, in addition to classification, this approach also 
provides a description of how the given pattern is 
constructed from the primitives. This paradigm has been 
used in situatinns whcrc: the patterns have a definite 
structure which can bc captured in terms of a set of rulcs, 
such as EKC wavchrms, textured iiiiages, and shapc 
analysis of contours [5h].  The implementation of a syntactic 
approach, huwcvcr, lcads to many d.ifficu1tics which 
primarily h a w  to do with the segmentatimi of noisy 
patterns (to detect the primitives) and the inference of the 
grainiliar from training data, V u  [56] inlroduccd the notion 
c i f  attributed grammars whicli unilics syntactic and statis- 
tical pattern recognition. The syntnckic approach niay yield 
a combinatorial explosion of possibilities to be investigated, 
dcmanding large training seis and very largc computational 
efforts [I 221. 

1.5 Neural Networks 
Neural networks can bc! viewed as massively parallel 
computing systems consisting of a n  extrcmcly large 
numbcr of simple processors with inally inkrconnections. 
Neural network models aftcinpt to iisc some orgauiza- 
tioiial principles (st icl i  a s  learning, gcncralimti.on, adap- 
tivity, fault tolerance and distributcd rcprcsentation, and 
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computation) in a network of weighted dircctcd graphs 
in which thc nodos arc artificial neurons and directed 
edges {with weights) are connections botwccn netiron 
outpiits and ncuron iiiputs. The main characteristics of 
neural networks are that they have the ability to learn 
complex nonlinear input-output relationships, USCL SP- 

quentitial training prucedures, and adapt thcmsclves to 
tlic data. 

The most commonly used family of neural networks f o r  
pattern classification tasks [#3] is Lhc fwd-forward network, 
which inclitcles inultihyer perceptron and Radial-Basis 
Function (RBI?) 11c tworks. Thcsc networks are organized 
into layers and have unidirectional connections belweeii the 
layers. Anothcr popular network is the Self-Organizing 
Map {SOMJ, or Kohonen-Network [92] ,  which is mainly 
uscd for d a h  clustcring and fcahirc mapping. The learning 
process involves updating network architccturc and coil- 
ncctim rvciglits so that a network can efficiently perform a 
specific classification/ clustering task. 'l'lie increasing popii- 
larity of ncurnl network models to solve pattertl recognition 
problcms has bccn primarily due to their seemingly low 
dependence on domain-specific knowledge (relative to 
mndcl-bawd and rulc-based approaches) and due io the 
availability of efficient learning algorithms for practitioners 
to USC. 

Neural networks provide a new suite of nonlinear 
algorithms Tor h t u r c  cxtmction (using hidden layers) 
and classification (e.g., multilayer perceptroiis). In add ition, 
cxisling fcalurc cxtracticin and classification algorithms can 
also be mapped on netirill network architectures for 
efficient (hardware) implcmcntaLinn. In spitc of thhc see- 
iningly different underlying principles, most of thc well- 
known neural network models are implicitly equivalent or 
similar to classical statistical pattern recognition methods 
(scc Tablc 3). Riplcy 11361 and Anderson et al. [ 5 ]  also 
discuss this relationship between neural networks and 
statistical pattern recognition. Anderson et al. point out that 
"ncural nctworks arc! statistics for amateurs... Most NNs 
conceal the statistics from the user." Dcspitu ~ ~ L ' S C  siinila- 
ritics, neiirel iictworks do offer several advantages such as, 
unified approaches for feature extraction and classification 
and flexible proccdurcs for finding good, moderately 
nonlinear solutions. 

1.6 Scope and Organizatlon 
In the remainder of this paper we will primarily review 
statistical mcthods for pattern representation and classifica- 
tion, cmphasizing recent dcvclopmunts. Wlwnever appro- 
priate, we will also discuss closely rclatcd algorithms froin 
the neural networks literature. We omit the whole body of 
li ternturc on fLizzy classification and ftizxy clustering which 
are  in our npiniot-t beyoiid the scopc o f  this yapcr. 
Intercskcd rcadors can rcfcr to thc wcll-written books on 
fuzzy pattern recognition by Hezdek [I51 and [IC,]. In most 
of tlic st'ctions, tho various approaches and methods are 
summarized in tables as a n  easy ancl quick refercnce for the 
reader. Due to space constraints, w e  are not able to provide 
ninny dctails and wc' hnvc to omit some of the approaches 
and the associated references. Our goal is  to emphasize 
those approaches which have been extensively evaluakcd 

and demonstrated to bc useful in praclical applicntioiis, 
along with the new trends ancl ideas. 

'I'he literature on pattern recognition is vast and 
scattered in numerous joitmals in scrxx~l  discipliiies 
(c.g., applied statistics, machiiic learning, neural nct- 
works, ancl signal and image processing). A quick scan of 
the table of contents of all the issues of the K E E  
Tmnsactions 0 1 1  Pattern Annlysis m d  Machine IrifclliK~nce, 
aincc ik first publication in January 1979, reveals that 
approximately 350 papers deal with pattcrn recognition. 
Approximately 300 of these papers covered ttie statistical 
approach a n d  can be broadly categorizcd into the 
following subtopics: ciirse of dimensionality (1.5), dimen- 
sionality reduction (501, classifier design (175), classifier 
ctmbinntion (lo), error cstimatiun (25) ancl urlsupcrviscd 
classification (50). In addition to the cxccllcnt textbooks 
by Duda and Hark [44]," Fukunagn [58], Devijvur and 
Ktttlei: [3Yl, Devroye et al .  [4:11, Bishop [18], Ripley [:I371, 
Schurmann [1471, and McLachlnii [105], we should also 
point out two excellent survey papers written by Nagy 
[ill] in 1968 and by Kanal [89] in 1974. Nagy described 
the early roots of pattern recognition, which at that timc 
was shared with researchers in artificial intelligence and 
pcrccptinn. A large part o l  Nagy'a paper introduccd a 
number of potential applications of pattern recognition 
and the intcrplay bctwcen feature dcfini tion and the 
application domain knowledge. Ile also emphasized thc 
lincnr classificnticin mcthods; nonlincar techniques were 
based on polynomial discriminant functions as well as on 
potential fuiiclims (similar to what are now callcd the 
kernel functions). Ey the time Kanal wrote his survey 
paper, inore than 500 papers and about hall' a doxen 
books on pattwn recognition were already publishcd. 
Kana1 placed less emphasis 011 applications, but tnorc on 
modeling and design of pattern recognition systems. 'Chc 
discussion on automatic feature cxtractioii in 1891 was 
bascd on various diskancc mcasurcs betwccn class- 
conditinnal prnbability dcnsity functions and thc result- 
ing error bounds. Kanal's review also contained a large 
section on structiiral methods and pattern gratnmars. 

In cnmparison to the state of the pattern recognition field 
as dcscribcd by Nagy and Kanal in thc 1960s mid 1970s, 
today a number of commercial pattern recognition systems 
are available which even individuals can buy for personal 
usc (e.g., machinc printed cliaractcr rccognition and 
isolated spokcn word rccngnition). This has bcen made 
possible by various technological developments resulting in 
the availability of inexpensive sensors and powerftil clesk- 
top computers. Tlw field of pattern recognition has become 
so large that in this review we had  to skip detailed 
descriptions of various applications, as well as almost all 
thc prnccdurcs which inorid domnin-syccific knowledge 
(e.g., structural pattern recognition, and riile-based sys- 
tems). l'hc starting point of our review (Secticin 2) is the 
basic elements of statistical methods for pattern recognition. 
It slirnkl be apparent that a halure vechr is a ruprcsenta- 
t ion of real world objects; the choice of the reprcscntatim 
strongly influences the Classification results. 

1. Its scctrnd crlition by Durln, I lar t ,  and Stork [43] is in prcss. 
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TABLE 3 
Links Between Statistical and Neural Network Melhods 

The topic of probabilistic distance measiirw is cur- 
rently not as important a s  20 ycars ago, sincc it is very 
d i Cficult to cs tima te d ensity func tioils j n high dimensional 
feature spaces. Instead, thc crmplexity of classihation 
procedures and the resulting accuracy have gaincd n 
large intcrcst. The curse of dimcnsioiiality (Seclinn 3 )  R S  

well ss the danger of owrhi i i ing  are some of t h u  
consequences of a complex classifier. It is now iindcr- 
stood that thcvc problems can, to some extent, bc 
circumvented using regularization, o r  can even bp 
complctcly resolved by a proper: design of classification 
procedures. 'The study of suppoit vcctor machines 
(SVMs), discussed in Section 5, has largely contributcd 
to this uiiderstaizdii?g. In many real world prnblcms, 
piitteim arc scattcrorl in high-dimensional (often) tion- 
linear subspaces. A s  a consrqueiice, nonlinear procedures 
and subspace appmachcs have become popular, both for 
dimensionaliiy rcdiction (Section 4) m d  for building 
classifiers (Scckion 5 ) .  Neural networks offer powerful 
tools for tlicsc purposes. I t  is now widely accepted khat 
110 singlo prticcdiire wil I complctcly solve a complcx 
classification problum. There arc many admissible ap- 
proaches, each capable of discl-iminahg patterns in 
certain portintis o f  the feature spacc. Tlic combination of 
classifiers hcis, tliercforc, bucome ii heavily studicd topic 
(Section 6). Varioiia approaches to estimahig thc error 
rntc of a classifier are prcscntcd iiz Section 7. Thc topic of 
unsupurvised classification 01' c1,ustering is covcrcd in 
Section 6. Finally, Section 9 identifics the frontiers nf 
pattern recogn i Lion. 

It is o u r  goal that most parts o f  the paper can bc 
appreciatcd by a iiewcomci: to the field of pattcm 

recognition. To this purpose, we h a w  included il riiirnbw 
of exainplcs to illustrate the pcrformance of v a  rioiis 
algorithms. Ncvcrtlwless, w e  realize that, due to space 
limitations, we h a w  not been able to introduce all the 
concepts complelcly. At these places, we havc to rely on 
the background knowledge which tnay bc available only 
to the more expericnccd rcndcrs. 

2 STATISTICAL PATTERN RECOGNITION 
Statistical pattcrn recognition has bccn used successfully to 
design n nuinbcr of commt?rcial rccogiiition systems. Tn 
sfnt is t icd pattern rcctignition, ii pattern is  rcprcsented by a 
set of d features, or attributes, viewed as a hdimcnsional 
feature vector. Well-known concepts from stalisticnl 
decision klieory are utili zed to cstablish dccisioii boiindarics 
bctwccn patl-orn classes. The recr)gnikion system i s  operated 
in two modes: training (learning) and classificatjor~ (t~sting) 
(see 15g. 1). The role of the prcprocc'sging module is to 
scgincnt the pattern of intcrcst  froin the background, 
remove n t k c ,  normalize the pa ttcm, and any other. 
operation which will contributc in defining a compact 
representation of the pattern. In  thcl training mode, the 
feature extraction/sclcction module finds thc appropriate 
features for represenling the input patterns and the 
classifier is trained partition the feature space. The 
Cccdback path allows a dcsigncr to optimize the preproccs- 
sing and feature extr~c~ion/xelectioi7 strategies. 111 the 
classificatioii mode, ihc h i n d  classifier assigns thc input 
pattern to one of thc pattcrii classes under considcration 
based on the mcasurcd features. 

test Fc al U 1'c 
Preprocessing i- McasLircrllcll~ ClassiTicalion pattern 

I I~cat11sc I training 
Preprocessing Extraction/ --b ]-calming 4 pattern Sclcclion 

t t 
Fig. 1 ,  Model for statislical pattern recognition. 
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Thc decision making process in statistical pattern 
recognition can be summarized as follows: A givcn pattern 
is tu bc assigned to one of c categories w1, wa. I , wE based 
on a vcctor of d feature valuics x = ( x 1 , x 2 ~ ~ ~ ~ , x r ~ ) .  Thu 
features dre assumed to h a w  a probability density or mass 
(dcpcnding on whether the features are continuous or 
discrctc) function conditioned on the pattern class. Thus, a 
prlttcrn vector z belonging t o  class is viewed as an 
observation drawn randomly from the class-conditional 
probability function p(zlw,). A number of well-known 
decision rules, including the Bayes decision rule, the 
maximum likclihood rule (which can bc vicwed as a 
particular c a w  of the Bayes rule), and thc Neyman-Pearson 
rule are available to define the decision boundary. The 
"optimal" Bayes decision rule for minimizing thc risk 
(expected value of the loss function) can be stated as 
follows: Assign input pattern 5 to class wi for which the 
conditional risk 

is minimum, where L ( w f , u j )  is the loss incurred in deciding 
ut when the true class is uj and P(wjlz) is the postcrinr 
probability [MI. In the case of the O/Z  loss functinn, as 
dcfincd in (2), the conditional risk becomes the conditional 
prubability of misclassification. 

0,  i = j  { 1,  i # j '  L(q, LJj) = 

For this choice of loss function, the Bayes decision rule can 
be simplified as follows (also callcd the maximum a 
posteriori (MAP) rule): Assign input pattern 5 to class wi if 

I'(walx) > P(wjlz) for a l l j  # i .  (4 
Various strategies arc utilized to design a classifier in 
statistical pattern recognition, depending on the kind of 
information available about the class-conditional densities. 
I f  all of the class-conditional densities are conipletely 
spccificd, thcn the optimal Hayes decision rule can be 
used to design a classifier. Howcver, the class-conditional 
densities are usually not known in practice and must be 
learned from the available training patterns. If the form of 
thc class-conditional densities is known (e.g., multivariate 
Gaussian), but some of the parameters of the densities 
(e.g., mean vcctrirs and covariance matrices) arc un- 
known, tlwn wc have a parametric decision problem. A 
common strategy for this kind of problem is to rcplacc 
the unknown paramctcrs in the density functions by their 
estimatcd values, resulting in the so-cnllcd Bayes plug-in 
classifier. The optimal Bayesian strategy in this situation 
requires additional information in the form of a prior 
distribution on thc unknown parameters. If Ihc form of 
thc class-conditional densities is not known, then we 
operate in a nonparametric mndc. In this case, we must 
either cstimntc the density function (e.g., I'arzcn window 
approach) or directly construct the decision boundary 
based on the training data (e.g., k-nearest neighbor rule). 
In fact, the multilayer perceptron can also be vicwcd as a 

supervised nonparametric method which constructs a 
decision boundary. 

Another dichotomy in statistical pattern recognition is 
that of supurviscd learning (labeled training samplcs) 
vcrsus unsupervised learning (unlabeled training sam- 
ples). The label OC n training pattern represents the 
category to which that patkrn bclongs. In an unsuper- 
vised Icariiing problcin, sometimes the ntiinber of classes 
must be lcarncd along with the structure of each class. 
The various dichotomics that appear in statistical pattcrii 
recrypition are shown in the tree structure of Fig. 2. As 
we traverse the tree from top to bottotn arid left to right, 
less iriformntion is available to the systcm dcsigncr and as 
a result, the difficulty of  classification problems jtzcreascs. 
In some scnsc, most of the approaches in statistical 
pattern recognition (leaf nodes i n  the tree of  Fig. 2) are 
attempting to implement tlic Bayes decision rule. The 
field of clustcr analysis cssmtially deals with decision 
making problems in the nonparametric and unsuperviscd 
learning mode [81]. Further, in duster analysis the 
nmnber of categories or clusters may not even be 
specified; the task is to discover a reasonable categorixa- 
tion of the data (if m e  exists). Clustcr analysis algorithms 
along with various tcchniquus f r i r  visualizing and project- 
ing multidimcnsional data are also referred to as 
expiumtory d a h  aiinlysis methods. 

Yet another dichotomy in statistical p a k r n  recognition 
can bc bawd 011 whether the decision boutidarics arc 
obtained directly (geometric approach) or indircctly 
(probabilistic density-based approach) as shown in Fig. 2. 
The probabilistic approach requires to cstimatc density 
functions first, and then construct the discriininant 
functions which specify the decision boundaries. On the 
other hand, the geometric approach often constructs t11c 
decision boundarios directly from optimizing certain cost 
functions. Wc should point out that under certain 
assumptions on the density functions, the two approaches 
are equivalent. We will sec' cxamplcs of each category in 
Seckiun 5. 

No matter which classification or decision rule is used, it 
must be trained using thlc availablc training samples. As n 
result, the pcrformance of a classifier depends on bokh the 
numbcr of available training samples as well a s  the spccific 
values of the samples. At the same time, thc goal of 
designing a recognition system is L o  classify fukire test 
samples which arc likcly to be different from the training 
samples. Therefore, optimizing a classifier to maxiinine its 
performance on the training set may not always result in thc 
desired perforinancc on a tcst set. The generalization ability 
of a classifier refers to its performance in classifying test 
patterns which were not used during thc Iminiilg stage. A 
poor generalization ability o f  a classifier can be attributed to 
any one of the following factors; 1) the number of features is 
tuu lnrgc relative to the number of training sainplcs (curse 
of dimensionality [80]), 2) the numnbcr of unknown 
parameters associatcd with the classifier is lnrgc 
(e.g., polynomial classifiers or a large neural nctwork), 
and 3) a classifier is too intensively optimizcd on the 
training set (nvertrainad); this is analogous to the 
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Fig. 2. Various approaches in stalistical pattern recognition. 

phenomenon of overfitting in regression whcn there are too 
many free parameters. 

Overtraining has been investigated theoretically for 
classifiers that minimize the apparent crror ratc (the error 
on the training set). The classical studies by Covcr [33] and 
Vapnik [162] on classifier capacity and coinplexity provide 
a gond understanding of the mechanisms behind 
overtraining. Complex clnssificrs (e.g., those having many 
independent paramctcrs) may have a large capacity, i.e., 
they are able to represent many dichotomies for a given 
dataset. A hqucnt ly  used measure for the capacity is thc 
Vapnik-Chervonenkis (VC) dimensicmality 11621. These 
results can also bc used to prove some interesting propcr- 
ties, for example, the consisteiicy of certain classifiers (see, 
Devroye et al. [40], [41]). The practical use of the results 011 

classifier complexity was initially limited because the 
proposed bounds on the required number of (training) 
samples wcre too conservative. Jn the recent dovclopmcnt 
of support vector machines [162], however, these results 
have proved to be quite useful. Thc pitfalls of over- 
adaptation of estimators to thc given tmining set are 
observed in several stages of a pattern recognition systcm, 
such as dimensionality reduction, density estimation, and 
classifier design, A sound solutioii is to always use an  
independent datasct (tcst set) for evaluation. In order to 
aroid the necessity of having several indcpcndcnt test sets, 
estimators arc oftcn based on rotated subsets of the data, 
preserving different parts of the data for optimization and 
evaluation [3.66]. Examples arc the optimization of the 
covariancc cstimatcs for the Parzen kernel [76] and 

Unsupervised 
Learning 

Parametric Nonparametric 

! 

I 

Resolving Analysis 

Geometric Approach 

discriminant analysis [h l ] ,  and thc iisc of bootstrapping 
hir  designing classifiers 1481, and for error estimation 1821. 

Throughout the paper, stimc o f  the classification meth- 
ods will bc illustrated by simple experiments on the 
following tlirec data sets: 

Dataset 1: An artificial dataset consisting of two classes 
with bivariatc. Gaussian density with the following para- 
meters: 

The intrinsic overlap between these two densities is 
12.5 pcrccnt. 

Dataset 2: Iris dataset consists of 150 four-dimcnsional 
patterns in three classes (50 patterns each): Iris Setosa, Iris 
Versicolor, and Iris Virginica. 

Dataset 3: The digit dataset consists of handwritten 
numerals ("W'-''9'') cxtracted from a collection of Dutch 
utility maps. Two fiundrcd patterns per class (for a total of 
2,000 pattenis) are available in the form of 30 x 48 binary 
imagcs. 'I'husc characters are represented in terms of the 
following six feature sets: 

I .  
2. 216 profile correlations; 
3 .  64 Karhunen-Lohe coefficients; 
4. 
5 .  47 Zernike moments; 
6. 6 morphological features. 

76 Fourier coefficients of the character shapcs; 

240 pixel averages in 2 x 3 windows; 
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Details of this dataset are availablc in [IhOj. In our imum discrimination between the two classes. 'l'he only 
experiments we always used the same subsct ci f  1,000 parameter i n  the densit ies is the incan vcctor, 
patterns Cor tcsting and various subs& of the remaining m = ml 7 . -m2. 

1,000 pntterns for training.' Throughotlt this paper, when Trunk considered thc hllowing twr) CRSC'S: 

we refer to "the digit dataset," just h e  Kxh:htinen-Loeve 
Icaturw (in item 3 )  are meant, unlcss stated otherwise. 

3 THE CURSE OF DIMENSIONALITY AND PEAKING 
PHENOMENA 

The performance of ;1 classifier depends on tlic inlcrrcla- 
tionship bctwccii sample sizes, nuinbur of features, and 
classifier complexity. A naive table-I ookup tcchniqiie 
(partitioning the feature space into cells and associating a 
class label with each cell) requites the numbcr of training 
data points to be an exponcntial function of thc fcaturc 
dimension [IS]. This phenomenon is termed as "curse of 
dimensionality," which lcads to the "peaking phcnnmcnon" 
(scc discussion below} i n  classificr design. I t  is well-known 
that the probability of misclassification of a decision rule 
dncs no( incrcase as the number of fcatures increases, as 
long a s  the class-conditional densities are completely 
known (or, equivalently, thc number of training samplcs 
is arbitrarily large and representative oC thc undcrlying 
dcnsitics). However, it has been often observed in practice 
that the added features inay actually degrade the pcrfnr- 
mance of a classifier if the izumber of training samples that 
are used to design h o  classifier is small rclativc to the 
number of features. This paradoxical behavior is rcfcrrcd to 
as thc? peaking phenomenon3 [SO], [131], [132]. A simple 
explanatinn f r r  h i s  pliei~oinenon i s  as follows: The most 
commonly used parametric classifiers estimate thc un- 
known parameters and plug thuin in for the true parameters 
in tlic class-coi~ditioni~l densities. For a fixcd sample size, as 
the number of features is incrcased (with a corrcspnnding 
iiicrcaso in the number of unknown parameters), the 
reliability of the prranieter estimatcs decreases. Cotwe- 
qiiently, the performance of the resulting plug-in classifiers, 
for A fixed sample sizc, may degrade with a n  iiicreasc in thc 
number of features. 

Trunk [I571 provided a siinple example lo illustrate the 
curse of dimensionality which we reproducc bcluw. 
Coiisidcr the two-class classification problem with equal 
prior prcibabilitics, and a d-dimensional multivariate GFILIS- 
sian distribiition with the idciitity covariance niatrix foi. 
cach class. The mean vectors for tlw two classes havc the 
foilowing compmcrits 

1 1  1 
7111 =(I. ,-  allcl 

J d  

Note that the features arc statistically jndependcnt and the 
discriminating power of Lhc successive features decreascs 
monotonically with the fjrst featurc providing the max- 

2. 'l'hc dnhsct is nvoilahlc thmugh the University of  Cnlihriiia, Irvinc 
Machine Imrning Kcpositor)- ( ~ v ~ v w . i ~ ~ . i ~ c i . ~ ~ i i / - m l ~ ~ ~ r n / M L l ~ c ~ o s i t o ~ -  
y.html) 

3. [CI thc rest of Ihin pipw, UT do nut makc distinclion be!rvc.cn tlw cul-sc' 
of diniensiw?nlity and thc pt?Jking phenomenun. 

I .  Thu mean vactor m is known. In this situation, we 
can use the optimal B a p  dccisirm rule (with a U/1 
loss function) tu construct the decision boundary. 
The probability of error as a function of d c m  be 
cxprosscd as: 

[t is easy to vcrify that liiii(l,Do Pt , (d)  = 0. In other 
words, we can perfectly discriminate the two clnssus 
by arbitrarily increasing h e  nuiiiber o f  features, d. 

2. The mean vector m is unkntiwii and n labeled 
training samples arc available. Trunk fomd  the 
maximum likelihood cstiiiiatc f i  of m and used thc. 
plug-in decision rulc (substihte fi for n i  in the 
optimal Rayes decision rulc). Now Ihc probability of 
error which is a function of both n and d can be 
written as: 

Trunk showed that liind. ,m cl(n,rE) = 4, which implies 
that the probability of error approaches tlw maximuin 
possiblc vnluc of 0.5 for this two-class problem. This 
demonstrates that, unlike case 1) we cannot arbitrarily 
incrcasu tlihc number of features when the paramctcrs of 
class-conditional densities arc estimated from il finitc 
number of training samples. 'I'he practical implication of 
the ciirsc of diiiiciisionality is that a system designer should 
try to selecl only a small number of salient features rvheii 
confronted wi.th a limited training set. 

All of the commonly uscd classifiers, including multi- 
layer feed-forward networks, can suffer from the curse oE 
dimensionality. While an cxact relationship between thc 
probabiliky of misclassification, the number of training 
samples, the numbcr of featurcs and the true paramctcrs of 
thc class-conditional densities is very difficult to establish, 
some guidelines havc been suggested regirding the ratio of 
tlic sample size to dimensionality. It is gwcrally accepted 
that using at lenst teen times as many training samples per 
class as the number of fccnturcs ( n / d  > 10) is H good practice 
to follow i n  classifier dcsipi [SO]. The more complex the 
classifiiur, thc larger should the ratio o f  sample size to  
dimensionality bc to avoid the curse of ditnensimality. 

4 DIMENSIONALITY REDUCTION 
There arc two main reasons to keep the diiiicnsionality c1f 

the pattern representation (i.e., the number of featiircs) as 
small as possible: measurement cost and classificalicni 

http://be!rvc.cn
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accuracy. A limited yet salienl- fuaturc set simplifies both the 
pattern representatioii and the classifiers that are built on 
the selected representation. Consequently, the rcsulting 
classifier will be faster and will iisc less memory. Moreover, 
as stntcd earlier, a small number of fcaiurcs can alleviate the 
curse nE dimcnsionality when the number of training 
samples is limited. On lhc othcr hand, a reduction in thc 
nuiiibcr of fcatures may lead to a lnss in thc discriinination 
power and tliercby lower the accuracy of the resulting 
rr?copiition system. Watanabe's rrgly d u c k h g  tliromm [I631 
also supports the need for a careful choice OF thc features, 
since it is possible to makc two arbitrary patterns sirpdnr by 
encoding them with a sufficiently large number of 
redundant features. 

It is important to make a distinction betwccii fcaturc 
selection and feature extraction. Thc term fcahirc selection 
refers to algorithms that sclect the (hopefully) best subsct of 
the input feature set. Mcllmds that create new feattires 
based on trausformatioiis or combinations of the original 
fcature set we called featurc extraction algorithms. How- 
ever, the terins feature selection and fcahirc extraction are 
uscd intcrchangcably in the literature. Note that ofton 
feature extraction precedes feattirc selection; first, features 
are extracted from the s m w d  data (e.g., using princi.pal 
component 01' discriminant analysis) and then some of the 
extractcd fcaturos with low discrimination ability arc 
discarded. The choice between fcaturc selection and feature 
cxtraction depends on thc application domain and the 
specific training data which is available. Feature scleciioii 
lcads to savings in measureinclit cost (since some of the 
features are discarded) arid the selected featurm rotain their 
original physical interpretation. In add ition, the retained 
features may be important for mderstandjng the physical 
process that generates thc pnttcrns. On the other hand, 
transformed features generated by fcaturc cxtraction inay 
provide a butter discriminative ability than thc best subsct 
of given features, but these new features (a linear o r  a 
nonlinear combination of given features) may not h a w  a 
clcar physical meaning. 

111 many situations, it is useful to obtain a hvo- or tlzree- 
dimcnsional projection of the given multivariate data (n x ri 
pattern matrix) to permit n visual examination of tlze data. 
Several graphical techniques also exist for visually obser- 
ving multivariate data, in which the objective is to exactly 
depick each pattern as a picture with d degrees of freedom, 
where d is the given numbcr of features. For example, 
Clzernoff [29] represents cadi pattcrn as a cartoon face 
whose facial characteristics, such as nose lcngkh, mouth 
curvaturrc, and eye size, are made to correspond to 
individual features. Fig. 3 shows three faces corresponding 
to the mean vectors of Iris Setosa, Iris Versicolor, and Iris 
Virginica classes in tlie Iris data (150 four-dimcnsional 
patkriis; 50 patterns per class). Note that the face associated 
with iris Setosa looks quite diflercnt from the othcr two 
faces which implies that the Setosa catugory can bc well 
separated from the remainiiig Lwo catcgnrics in the four- 
dimensional feature space (This is also evident in the two- 
dimensioiial plots of this data in Fig. 5 ) .  

The main issue in dimensionality reduction is the chnicc 
of i\ criterion function. A commonly used criterion is the 

Classification error of a fmturc subsct. But thc classification 
error itself cannot be reliably estimated when the ratio of 
saniple size to tlie iitimber of features is small. In addition to 
the ch(iico of R critcrion function, wt. also nccd to determine 
the appropriate dimensionality of tlic rcduccd fcnturo 
spwe. The answer to this question is embedded in thc 
notion of tlw intrinsic dimcnsionality of data. Intrinsic 
dimensionality essentially determines whether tlic givcn 
rl-dimcnsioiial pattcrns can be described adequately in rl 

subspace of dimensionality less than (I. Pnr cxample, 
d-dimcnsional patterns along a reasonably smooth curve 
have an intrinsic dinicnsioiiality of uiic, irrcapective of the 
value of d. Note that the intrinsic dimensionality is not tlic 
samc as thr! lincar dimcnsionality which is a globa I property 
of the data involving tlic iiunibcr of significant eigenvalues 
uf thc covariance matrix of tlze data .  While several 
algorithms are available to estimate the intrinsic dimension- 
olity [MI, they do not indicate how a subspnce of the 
identified ditnensionality can be easily identified. 

We now briefly discuss some of the commonly uscd 
methods for feature extraction and feature selcction. 

4.1 Feature Extraction 
Vcaturc cxtrnciion methods determine an appropriate sub- 
space of dimensionality (cithcr in a lincar (ir il nonlinear 
way) in the original feature space of djmensionality d 
{rri 5 d). Linear transforms, such as principal component 
analysis, factor analysis, li ticap discriminant analysis, and 
projuction pursuit have been widely used in pattern 
recognition for fcaturc extraction and diinensioiiality 
reduction. The best known linear feature extractor is thc 
principd component analysis (PCA) or Karhunen-Lo&ve 
expa tision, that cr)mputccs thc na largest eigenvectors of the 
d x d covariatice matrix of the 71, d-diincnsirinal pattt'riis. The 
linear transformation is defined as 

Y X U !  (7) 
whew X is thc givcn n. x d pattcrn matrix, Y is the derived 
II x rii pattern matrix, and 1-I is thc d x ~n matrix of  Iincnr 
tmnsftirmation whose columns are the eigenvectors. Since 
I T A  usc's the mnst cxprcssivc fciltures (cigeiivectors with 
the largcs t eigenvalues), it effectively approximates the data 
by a lincar subspace using the incan squared mor  criterion. 
Other methods, like projection pursuit  [ 5 3 ]  and 
independent component analysis ([CA) [31], [:[I], [XI, 1961 
art! mort appropriate for non-Gaussian distributions since 
they do not rdy on thc second-ordcr propcrty of the data. 
ICA has been successfully uscd for blind-sourcc scpmation 
[ 781; ex trac ti rig U nea 1: feat i i  re comb i nations that dcfiiw 
indcpcndcnt sources. This demixiiig is possible i f  at most 
one of the sources has a Gaussian dishibulion. 

Whereas PCA is an unsuporvisod lincar feature extrac- 
tion method., discriminant analysis uses thc category 
information associated with each pattern for. (linearly) 
extracting the must discriminatory fcaturos. In discriminant 
analysis, interclass separation is emphasized by replacing 
the total covariance malrix in PCA by R gciicrd separability 
measure like the Fisher criterion, which rcsulls in finding 
thc cigcnvcctors of j91,;'Sb (the product of the iwerse of the 
withimclass scatter matrix, S,,,, aiid the behueen-class 
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Setosa Versicolor Virginica 

Fig. 3, Chernoff Faces corresponding to the mean vectors of Iris Sstosa, Iris Versicolor, and Iris Virginica. 

scatter matrix, S b )  [58]. Another superviscd criterion for 
non-C:aussiaii class-conditional densities is  bawd on the 
Patrick-Fisher distancc using Parxen density estimates 1411% 

There are swcral ways to define nonlinear Featurc 
extraction tcchniques. One such method which is directly 
related to PCA is called the Kerncl PCA [73], [145]. Tlic 
basic idea of kerncl PCA is to first map input data into s(mc 
new featurc spacc F typically via a nonlinear runctim <I) 
(c.g., polynnminl o f  degree p) and then perform a lincar 
PCA in the mapped spacc. Huwever, the F' space often has 
a very high dimension. To avoid computing tlie mapping @ 
explicitly, kernel PCA empliiys only M:ercer kernels which 
can be decomposcd into a dot pi:oduct, 

K ( . E , ~ )  iT?(z) (I)(?)) 

As a result, thc kernel space has c? well-Jefincd metric. 
Examples of Merccr kernels include ptli-order polyncmiinl 
(x - y)" and Caussian kernel 

lii2., 
(.' r: 

Lct X be the normalizcd n, x (I pattern matrix with zero 
mean, and +(X) be the pattern matrix in the J' space. 
Thc linear PCA in the I.' spncc solves the eigcnvcctors of the 
correlation matrix @(X)iP(.X)~", which is also callcd tlw 
kcrncl matrix K ( X , X ) .  In kernel PCR, the first m 
eipnvoctors of K (  X ,  X )  arc cibtained to define a transfoi-- 
mation matrix, E. ( E  has size ri x m, where T I L  represents thc 
desired number of  features, ' ~ 1  5 d). Ncw patterns 2 arc 
niappcd by I<(x !  X)IJ, which are now represented relativc 
to the training sct and not by their measured feature valucs. 
Note that for a cornplclc rupresentation, up to TI eigenvcc- 
tors in I? may be needed (depending on the kerncl function) 
by kcrncl PCA, while in lincar PCA a sot of d eigenvectors 
represents thc original Featurc space. l.Iow thc kernel 
function should bc chosen for a givcn application is still 
ail open issue. 

Mtiltidimeiisional scaling (MDS) is anolhcr nonlinear 
fcattire extraction tcchniquc. It aims tu rcprcseiit a multi- 
diniensional dataset in trvo or thtcc dimensions such that 
the distance matrix in the original d-dimensional featiirc 
space is prescrvcd as faithfully as possible in the projected 
space. Various strcss functions are uscd hir measuring the 
ycrformance of this mapping [20]; ttic most popular 

critcrioii is the stress funchin introduced by Saiiimon 
['143.] and Nicmanii [1:14]. A problem with MDS is that it 
does not give an explicit mapping function, s o  it is not 
passible to place a ncw pattern in a map which has been 
computed for a given training sot without repeating the 
mapping. Several techniques havc bwn investigated to 
address this dcficicncy which range from liiicar interpola- 
tion to training a neural network 1381. It is also possible to 
redefine the MDS algorithm so that it directly produccs a 
map that iiiay be used for new test patterns [165]. 

A fwd-forward neural network offers an integrated 
procedure for fcaturo extraction arid classification; the 
rmtput of each hidden layor may be interpreted as a set of 
new, often nonlinear, features presented to thc output laycr 
for classification. In this sense, multilayer networks serve as 
feature extractnrs [ml. For cxample, the networks uscd by 
Fukushima [62] c t  al. and Le Ciin et al. 1951 h a w  the so 
called shared weigh[ layers that arc in fact filters for 
extracting features in two-dimensional images. During 
training, tlie filters are tuned to the data, so as to innxiinize 
the classification performance. 

Neural networks can alsti bv used directly for icature 
extraction in an unsupervised mode. Fig. 4a shows thc 
architecture of a nctwork which is able to find the PCA 
subspacc 11171. Instead of sigmoids, the neurons have linear 
transfer fiinctions. This network has d inputs and il outputs, 
where d is Lhc givcn number of featmcs. The inputs are also 
used as targets, forcing the output layer to reconstruct tt ic 
input space iisiiig cmly one hidden layer. l'hc ihrce nodes in 
the hidden layw capture tlie first three principal compo- 
nents [MI. If two nonlinear layers with sigmoidal hidden 
wi t s  arc also iiicluded (see Pig. 4b), then a nonlitwar 
subspace is found in the middle layer (also called lhc 
bottlcncck layer). The nonlinearily is limited by the size of 
these addilioniil layers. These sn-callcd autoassociative, or 
nonlinear I T A  nchvorks offer a powerCul tciol to train and 
describe nonlinear subspaces [98]. o ja  [118] shows how 
autoassociative networks cnii be used for TCA. 

The SelLOrgnni~ing Map (SOM), or Ihhonen Map 1921, 
can also be used for nonlincar feature extraction. In SOM, 
iieiirons arc arranged in an m-dimensional grid, where 1'11. is 
usually 1,2, OF 3. Bach iieuron is comwctcd to all the d input 
units. The weights on the connections for each m m o n  form 
a d-dimensional weight vcctor. Ditring training, patterns arc 
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Fig. 4. Autoassociative networks for finding a three-dimensional subspace. (a) Linear and (b) nonlinear (not all the connections are shown). 

prcscnlcd to Ihc iictwork in a random ordcr. At each 
presentation, the winner whose weight vector i s  the closest 
to Ihc input vcctor is first idcntificd. Thcn, all thc neurons in 
tlw ncighborhond (dclincd on Ihc grid) o f  thc winiior are 
updated such that their rvejght vectors m o w  towards thc 
input vcctor. Conscqucntly, after training is done, the 
weight vectors of neighboring neurons in the grid arc likdy 
to repwscnt input patterns which are close in tlze original 
feature space. Thus, a "topology-prcservir~~" map is 
h m c d .  When tlw grid is plotkd in the original spncc, thc 
grid coiinectioiis are more or less stressed according to the 
density of the training data. Thus, SOM ciffcrs a n  
,/ri-diineiisioiial map with a spatia1 connectivity, which can 
bc iritcrprctcd as fcalurc cxtractim. SOM is different from 
learning vector quantization (LVQ) because no neighbor- 
hood is dclincd in LVQ. 

Table 4 summarizes the feature extraction and projection 
inrthods d iscussed ilbove. Note that the adjective nonlinear 
may bc uscd bcith for tlw mapping @cing n nonlinear 
function of the original features) as well as for the criterion 
{urictirm (for non-Gaussian data). Fig. 5 shows an Pxamplc 
of four different two-diinensioiznl projections of the four- 
din~cnsional Iris datasct. Fig. 5a and Fig. 5b shc~~.v two lincnr 
mappings, while Fig. 5c and Fig. 5d depict two nonlinear 
mappings. Chly thc Pishcr mapping (Fig. 5b) makcs iisc of 
thc category information, this being the main reason why 
this mapping cixhibits the best scparation bctwccn thr! thrcc 
categories. 

4.2 Feature Selection 
Thc prriblcrii of feature selection is defined as follows: giveti 
a set of d features, select n subset of size ,/rL that Icads to the 
smallest classilicaiirm error. 'Thcrc has bccn a rcsurgcncc of 
interest in applying feature selection methods due to the 
largc nuiiibcr of fcalurus uncrnmtcrcd in tlw k)llowing 
situations: 1 )  multisensor fusion: features, computed froin 

different sensor modalities, are concntcnatcd to form R 

feature vector with a large II timber of co~npoiients; 
2) integration of multiple data models: seiisor data can be 
modeled using different approaches, where the model 
parameters serve as features, aiid tlw ynranwte1.s from 
different inodcls can bc poolcd to yield x high-ciiincnsioiial 
fcnturc vector. 

Lct Y bc thc givcii sct of fccahircs, with cardinality rl and 
k t  nt reprusent the desird number of features in the 
selected subset X ,  X r: Y.  Let the featlire solectioiz criterion 
funclion for h c  sct X be rcprcscntcd by J ( X ) .  Ect LIS 

assitme that a higher value of #J  indicates a better feature 
subsot; a natural choicc f o r  tho critcricm function is 
.I - (1 ~ l<,) ,  whcrc i<. dcnotes ihc classification crror. Ttic 
use of Pc in the criterion function .makes feature selection 
procedures depcndent on the specific clnssificr that is usud 
and thc sizcs of thc training and test scts. Thc most 
straightforward app ronch to the featii re selection problem 
would reqiiirc 1) cxnmining all (3 possible stdsets of s i ~ c  
mn,, and 2) sclcciing thc subsot with thc largc'st valui: of .7(.). 
However, the nuiiibcr of possiblc subscts grows combim- 
torially, making this cxliaustivc scarcli impractical for cvcn 
moderate values of 'm and rl .  Cover. a n d  Van Camyenhout 
[ 3 5 ]  showed that no nonexhaustive scqiiential feature 
selectim procedure can be giiaranteeci to prnducc thc 
riptiinal siibsct. T h y  fur1hi.r showcd that any ordering o f  
the classification errors of each of the 2" feature subsets is 
possiblc. Tlicrcforc, in ordcr to giiarnntcc h c  optimality of, 
say, n 'IZdiir~ensjonal kature subset out of 24 available 
features, approximately 2.7 inillion pussiblu subscts must bc 
cvaluatcd. 'l'lic only "optimal" (in terms of a class ol 
monotonic ci:itei:i on functio.ns) feature selection method 
which iivoids the exhaustive search i s  based on the branch 
and bound nlgorihn. This prticcdum avoids an cxliaustivc 
scarch by using intermudiatc results fur obtaining bounds 
on the final criterion value. The key to this algorithiin is the 
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Fig. 5. Two-dimensional mappings of the Iris dataset (+: Iris Sstosa; *: Iris Versicolor; 0: Iris Virginica). (a) PCA, (b) Fisher Mapping, (c) Sammon 
Mapping, and (d) Kernel PCA with second order polynomial kernel. 

monotonicity property of the criterion function J( .); givcn 
two features subsets X I  and Xz ,  if  X1 c X2, then 
J(XL) < J(Xy) .  In othcr words, the performancc of a 
feature subset should improve wliencvor a feature is added 
to it. Most commonly used criterion functions do not satisfy 
this monotonicity property. 

It has becn argued that since feature selectinn is typically 
done in an off-line manncr, thc execution time of ii 
particular algorithm is not RS critical as the optimality of 
thc Ccalurc subset it generates. While this is true for feature 
sets of intrdera tc size, severill recent apylicatiuns, particu- 
larly those in data mining and document classification, 
involvc thousands of features. In such cases, thc computa- 
tional requirement o f  a fcaturc selection algorithm is 
cxtrcmcly important. As the number of fcature subset 
evaluations may easily bccomo prohibitive for large fcaturc 
sizes, a number of suboptimal selecticnl techniques have 
been proposcd which essentially tradeoff the optimality of 
the selected subset for computational efficiency. 

Tnblc 5 lists most of the well-known fenturc selection 
methods which have bem proposcd in the literature [85]. 
Only thc first two methods in this tablc guarantee an 
optimal subsct. All other strategies are suboptimal due to 

the fact that the best pai r  01: Fcaturcs nccd not contain the 
best single feature [34].Iiz general: good, larger katurc sets 
do not necessarily iiicludc thc good, small sets. As a result, 
thc simple method of selecting just the best individual 
featitres may fail dramatically. It might still be USCFUI, 
however, as a first step to selcck some individually good 
features in decreasing very largc fcnturc sck (e.g., hundreds 
of fwturcs). Furtlier selection has to be dotic by more 
advanced methods that take fcalurc depciidencies into 
account. These npernk citlwr by evaluating growing fenlurc 
sets (forward selectinn) by cvaluating shrinking fealurc 
scts (backward selection). A siinplc. scqwntial method likc 
SFS (SBS) adds (dclctes) one feature a t  a titnc. More 
sophisticated techniques arc thi. "Plus 1 - take away r" 
strategy and the Sequential Floating Search methods, SFFS 
and SRFS [:L26]. 'l'hcsc methods backtrack as long as they 
find improvements compared to prcvious fmturc sets of thc 
mint sim. In almost any large feature selection problem, 
these methods perform better than the straight scqiicntial 
searches, SFS and SBS. SFPS and SWS methods G i d  
"ncstcd" sets of features that remaiii hiddcn otlierwisc, 
but the nuinbcr of feature set evaluations, howcver, may 
easily incrcast. by a factor of 2 to IO.  
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TABLE 4 
Feature Extraction and Projection Methods 

P ra p er ty 

[n addition to thc scarch strategy, the user needs to select 
an appropriate evaluation criterion, J(.) arid specify the 
value of ‘wt. Most featurc selection methods use the 
classification error of a feature subset to evaluate its 
cffectiveness. This could be donc, frir  example, by a I;-“ 

classificr iising the leave-one-out method of error estima- 
tion. However, use of a different classifier and a diffcrcnt 
mcthod for estimating the error rate could Iead Lo ii 

different fuaturc subset being selected. Ferri et al. [50] and 
Jain and Zongkcr [85] have coinpared several of the feature 

TABLE 5 
Feature Selection Methods 



JAlN ET AL.: STATETICAL PATTERN RECOGNITION: A REVIEW 17 

selection algorithms in terms of classification error and run 
time. The general conclusion is that the sequential forward 
floating search (SPlS) method performs almost as well as 
h e  branch-and-bound algorithm and demands lower 
computational resources. Somol et al. [-I541 have proposed 
an  adapthe versinn of the SFPS algorithm which has been 
shown to have superior pcrformance. 

The feature sclcction methods in l’ablc 5 can be used 
with any of the well-known classifiers. hit ,  if a multilayer 
fced forward network is used fm pattern classification, then 
thc ntidc-priming method siinultancously determines both 
tlic optimal feature subset and tlic optimal network 
classifier [26], [103]. First train a nctwork and then removc 
the least salient nudc (in input or hidden layers). The 
rediiced network is traincd again, followed by a removal of 
yet another least salient node. This procedurc is repeated 
until the desired trade-off between classification crror and 
size of the nefwork is achicved. The pruning of  an input 
node is eqii ivalent to rcmoving the corresponding fciiture. 

How reliable are thc fcature selection results whcii the 
ratio c ~ f  thc available number of training samples to the 
numbcr of  features is small? Suppose tlie Mahalanobis 
diskincc [SS] is used as tlie feature sclcction criterion. It 
dcpcnds 011 the inverse of the average class covariance 
matrix. The imprecision in its estimate in small sample size 
situations can result in an optimal feature subsc.1 which is 
qiiite different from the optimal subset that would be 
obtained when thc covariance matrix is knnrun. Jain and 
Zongker [t is] illustratc this phenomenon for a two-class 
classifka lion prriblcm iiivolving 20-diinensional Gaussian 
class-conditional densities (the same data was also used by 
Trunk [I571 to demonstrstc the ciirse o f  dimmsionality 
phcnomcnon). As expected, the quality of the selected 
feature subsct for small training sets is poor, but improves 
as Ihc Lrainiiig set size increases. For example, with 20 
patterns in h c  training set, the branch-and-bound algo- 
rithm sclcctcd a subset of 10 features which included only 
five fcnturcs in common with the ideal subset of 1.0 features 
(when densities were known). With 2,500 patterns in tlic 
training set, the branch-and-hmd proced Lire sclcctcd a 10- 
feature subset with only one wrong feature. 

l3g. 6 shows an example ol: thc feature selection 
prticcduro using the floating search tcchnique on the I’CA 
fcaturcn in tlw digit dataset for two different training set 
sizes. Thc kcst sct size is fixed at 1,Oflo patterns. In each of 
tlw seleckcd €catitre spaces with dimcnsimalities ranging 
from :L to 64, the Bayes plug-in classifier is designed 
assuming Gaussian densities with equal covariance 
malriccs and evaluated on the tcst w t .  The feature selection 
criticrim is thc minimum pairwise Mahalanobis distance. In 
tlw sni~ll sample sbe case (total of 100 training patlerris), 
the cwse of d imcrisicninlity plienomenon can be clcarly 
observed. In this caw, tlw optimal number of Icaliircs is 
about 2U which equals n / 5  (?E = LOO), where n is thc nitmbcr 
of training patterns. The riile-of-thumb o f  lintring less than 
r r / l O  features is on tlw s a k  side in general. 

5 CLASSIFIERS 
oncc a fcahirc sclcction 0 1  classification procediire finds a 
proper representation, a classifier can be desigtwd using a 

. . . . . . .  ,,;: :: . . . . . . . . .  .,: ........................ . . . . . . . . . .  ........................ 
....... 100 iraining patterns 

1000, !raining patterns 

I ............................................. I - ....... )., .............. 
10 20 30 40 50 60 

No. of Features 
OO 

Fiy. 6. Classification error vs, the number of features using the floating 
search feature selection technique (see text). 

number of possible approaches. In practice, the choice of a 
classifier is B difficult problem and it is oflcn based on 
wliich classifier(s) happen to be available, nr bust known, to 
tho iiser. 

We identify three diffcrcnt appimches to designing a 
classifier. ‘ l h  simplost and the most intuitive apprtmch to 
classifiicr design is based on the concept of similarity: 
patterns that RE siniilar should be assigned tci the same 
class. So, once a good inetric has been establishcd tu define 
similarity, pattcrns can be classified by template inatching 
or tlw ininimum distance classifier using a few prototypes 
per class. The choice of thc metric and the prototypcs is 
crucial to the success of this approach. I n  thc nearest mean 
classifier, selecting prntolypcs is very simple and robust; 
t.acli pattem class is rcprcscnted by R single prototypc 
which is the mean vector of all tlic training patterns in thnl 
class. Mow advariccd tccliniques for compiitj ng grrrtotypes 
are vector quantization [115], [I711 and learning vector 
qunntixation [92], and the data rcduciinn mcthods asso- 
ciated with the orwilearcst nciglibor decision rule (:i -NN), 
such as editing and colidensing [39] .  Ttic ii-tost 
straigtithrward 1-NN ride can be convenieiitly uscd as a 
benchmark for all tlic other classifiers sjnce it aplwars to 
always provide R reasonable classification performance in 
most applicntions. Further, as the I-NN classilier does not 
require any user-spccificd parameters (except perhaps the 
distancc nictric used to find the nearest tirighbnr, but 
Euclidcaii distance i s  commonly used), its classification 
results arc implementation independclit. 

In inany classification problems, the classificr is 
expected to have s(mc desired iinwitIt1t propertics. An 
example is the shitt invariancc Of characters i t )  character 
recognition; a cliaiip in a character’s location should riot 
affcct its classification. ‘If the preproccssiiig or tlic 
representaticin schcme does not normaliec thc input 
pattern for this invariance, then tlic samc character may 
be rcprusented at multiple positions in thhc fcature spncc. 
T11t.s~. positions define a nnc-diiiicnsiniini subspace. As 
more invariants are considered, the dimeiisioiiality of this 
subspace correspondingly iiicrcases. Template matching 
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or tlie nearest mean classifier can be viewed as finding 
the ncarcst subspace 11161. 

The second main conccpt used for designing pattern 
classifiers i s  bascd on thc ivobabilistic approach. Thc 
optimal Bayes decision rulr! (with the O j l  loss function) 
assigns a pattern to tlie class with the maximum posterior 
probability. This rulc can bc modified to take into account 
costs associated with different types of misclassifications. 
1;nr known class coiiditionai densities, thc Bayes decision 
rule givcs thc optiinum classifier, in the scnw hat, for 
given prior pmbabilitics, loss function and class-condi- 
tional densities, no other decision rulc will have a lower 
risk {i.e., cxpoctcd value of the loss function, for example, 
probability of error). If thc prior class probabilities are  
cqud and a 0/3. loss function is adoptcd, the Bayes 
decision rule and the maximum likelihood decision rule 
exactly coincide. In practice, the enipirical Bayos dccision 
rule, or "plug-in" rule, is used: the estimates cif thc 
deiisiti.es are wed in placc of the true densities. These 
density estimates are either parametric or nunparametric. 
Commonly used parametric modcls arc multivariate 
Gaussian distributions 1581 for continuous Ccaturcs, 
binomial distributions for binary features ,  and 
mtiltinormal distributions for  intcgcr-valued (and catego- 
rical) features. A critical issue for Gaussian distributions 
is the assumption made about the covariance matrices. If 
tlic covariance matrices for different classes arc assumcd 
to be identical, then the Bayw plug-in rulc, called Dayes- 
nrirmal-lincar, pi'ovides a linear decision boundary. On 
the other harid, i f  the covariancc mati<ices are assumed to 
bi! diffcrcnt, the resulting Hayes plug-in rulc, which we 
call Bayes-izormal-quad ratic, providci a quadrat ic  
decision boundary. In addition to the commonly uscd 
maximum 1ikclihor)d cstiinator of the covariance matrix, 
various regularization tcchniqucs I541 are available to 
obtain a robust estimate in small samplc size situatiuns 
and the lcave-one-ou t estimator is available for 
minimizing the bias [76]. 

A logistic classifier [4], which i s  based on the iliaximum 
li kelihnod approach, is well suited for mixed data types. For 
a two-class problem, the classifier maxiniizcs: 

whcrc cl~(z:O) is the posterior probability of class L+, given 
:U, 8 denotes the set of unknown parameters, and x,(j) 
deizotes the ith training samplc from class L+, j = I ,  2 .  Given 
any discriniinant function U(z ;  e), whcrc 0 is tho parameter 
vector, the posterior probabilitics can be derived as 

which arc callcd logistic functions. For linear discriminants, 
D ( x ;  e), (8) can be easily optjmized. Equations (8) and (9) 
may  also bc used for estimating the class conditional 
poskrior probabilities by optimizing D(x;  0 )  over the 
training set. The relationship between the discriminant 
function U(z: 0) and the posterior probabilities can be 

dcrivcd as follows: Wc know that the log-discriminant 
function for the Uayes decision rule, given the posterior 
probabilities q , ( x ; O )  and qa(.x:O), is log(ql (rj O)/qJ(x;U) j .  
Assume that I)($; 0) can bc optimized to approximate the 
Baycs dccision boiindilry, i.e., 

D(x:e) = log(yliz;8)/~~2(2;8)). (10) 

(11) 

We also h a w  

ill (s;B) + qy(3::O) = 1. 

Solving (10) and (13.) for 
Tlic t w o  well-known nonparametric decision rules, the 

k-neatest neighbor (k-NN) rule mid thc Parzcn classifier 
(the class-cunditionnl dcnsities iwe replaced by their 
cstiinntcs using the Parxeiz window approach), whilc 
similar in nahirc, give different results in practicc. 'L'hcy 
both have essentially one free parameter each, thc nuinbor 
of neighbors I;, or the smookhing paraiiictor of the Parzen 
kemd, both of which can be optimized by a leave-one-out 
estimate of the error ratc. Further, both lhcsc classifiers 
rcquirc tho coiiiputation of the distances between a test 
pattern and all the patterns in thc training sck. Thc most 
convcnicnt way to avoid those large numbers of cornputa- 
tions is by a systematic reduction of the training set, e.g., by 
vector: quantization tech nicptes possibly combincd with an 
optimized metric or kcrncl [613], [hl]. Other possibilities like 
table-look-up and br-anch-and-bound mclhorls I421 arc less 
efficient for largc dimcnsionalitics. 

I ' h  third catcgriry o f  classificrs is to coiistruct decision 
boundarics (gctiinctric approach in Fig. 2) directly by 
optiniizing certain error criterion. While this approach 
deponds on the chosen mctric, soiizetinzes classifiers of this 
type may approximate the Bayes classifier asymptotically. 
'I'hc driving fwcc of the training procedure is, however, the 
minimization of a criterion such as the apparent classificn- 
tion error (ir thc iiican quarcd error (MSE) between the 
classifier output and some preset target valuc. A classical 
example of this typc of classificr is Fisher's linear 
discriminant khat miniinizcs thc MSE bctween the classifier 
output and the desired labels. Another examplc is thc 
single-layer perceptron, where thc scparaLirig hypcrplaiic is 
iteratively updatcd as a luiictioii of thhc distances of the 
misclassified patterns from the hyperplane. If thc siginnid 
function is used in combination with thc MSE criterion, as 
in fccd-forward iieiiral. nets (also called niultilayer percep- 
irons), the perceptron may show a bchavior which is siinilir 
io other liiicar classificrs [133]. It is important to note that 
netird networks themselves can  lcad to inany diffcrcnt 
classificrs dqwnding on how they arc trained. While the 
hiddcn layers in multilayer perceptroils alIow nonliiicar 
dccision boundaries, they also increase the daiigor of 
ovurlraining tlw classificr sincc the number of network 
paramctors incrcascs as more layers and more neurons pcr 
layer are added. Thercfnrc, thc rcgularization of neural 
networks may bc ncccssary. Many rcgulariLation mechan- 
isms arc alrcady built in, such a s  slow training in 
combination with early stopping. Other rcgularimtion 
mctlwds include the addition of noise and weigh1 decay 
[Is], [28], [:137], and also Baycsian Icarning 1:113]. 

(z; 0) sncl q j ( x ;# )  results in (9). 
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constrained by Aj f l ( z j )  2 1 -E : ; ,  V X , ~  in the training set. h i s  
a diagonal matrix containing thc labels A j  and the matrix IC 
stores the valucs of the kernel function IC(xi, x )  for all pairs 
of training yattcms. The set of slack variables ~j allow for 
class overlap, contrtdlcd by the penalty weight C > 0. For 
(7 = CO, no overlap is allowed. Equation (1.3) is thc dual 
form of maximizing the margin (phis the penalty term). 
During optimization, the vnlucs of all cri become 0, cxccpt 
for l:hc support vectors. Sn the support vectors are the only  
ones that arc finally. needed. l'he ad hoc character of tlw 
penalty term (error penal~y) nnd the computational com- 
plcxity of the training procedurc (a quadratic minimization 
problem) arc thc Jrawbacks of lhis method. Various 
training algorithrns have been proposed in the litcrature 
[ 231, including chuiiking [ 161 1, Osuna's decomposition 
method [119], and sequential minimnl optimiziltion [ 1241. 
An appropriate kcrncl fiunction TI (as in  kerncl PCA, Section 
4.1) needs to be sclcctccd. In its most simple form, it is just a 
dot product between tho input pattern z and a member of 
tlic support set:  xi xi,^) :: x i  . x, resulting i t )  il linear 
classifier. Nonlinear kernels, s~ich as 

K ( X i , X )  = ( X i  ' X  + l)!'! 

result in a pth-order polynomial classifier. Ihussiaii radial 
basis functions can also be used. The important advantage 
of thc support vector classifier is that it offers EI possibility to 
train gencraliznble, iionliriea r classifiers in high-dimcn- 
sional spacw using a smal l  training sei. Moreover, for large 
training sets, it lypically selects a small support set which is 
necessary for designing tlie classifier, thcrcby iniiiirniziiig 
the camputalitiid requirements during ksting. 

'llic support vector classifier can also be understood in 
terms of the Iradilioml teemplate matching techniques. 'I'hc 
support vectors replace the prototypes with the main 
diffcrence being thal: they characterize the  classes by a 
decision boundary. Morcovcr, this decision boundary is not 
just defincd by theminimuin disl-anccf~inction,but by amore 
general, possibly non1 i near, combination of these dishices. 

Wc summarize the most commonly used classificrs in 
Table 6. Many of them rcprcscnt, in fact, an entirc family of 
classifiers and allow th:hc user to inoclify several associated 
paramctcrs and criterion hinctions. All (or almost all) of 
these classifiers are adruissible, in  thc sense that there cxist 
some classificatinn problems Cor which they are the best 
choicc. An extensive cornpmison of a large set of classifiers 
ovcr many different problcms is the Statlog prtjcct [I091 
which showed a large variability over their relative 
performances, illustrating that there is no such hing as an 
nvcrall optimal classificatioii rule. 

The differences between the decision boundaries obtained 
by different classifiers arc ilhistrated in Fig. 7 using dataset 1 
(2-dimensiona1, two-class problem with Gaussian derisi tics). 
Note the two small isolated arcas for IT$ in Pig. 7c for the 
1-NN rule. The neural network classifier in Fig. 7d even 
shows a "ghost" region that seemingly has nothing 10 do 
with the data. Such rcgions are less probable for a sinall 
numbcr of hidden lnycrs at the cost of poorer class 
scpai'a tion. 

One of thc interesting charactcristics of multilayer 
pcrccptrons is that in addition tu classifying an input 
pattern, they also provide a confidence in the classificntion, 
which is an approximation of the postcrior probabilitics. 
'Thusc confidence valiics may be used for rejecting a test 
pattern in cast. o f  doubt. The radial basis function (about a 
Gamsiaii kerncl) is better suited than the sigmoid transfer 
function for  handling outliers. A radial basis network, 
howcvcr, is usually traiiicd differently than a multilayer 
porccptron. Instead o f  R gradient search on the weights, 
hidden neurons arc added unti I some preset performance is 
rcnchcd. The classification restilt is comparable to sitiiations 
whcrc each class cnnditional density is represented by a 
wcighted slim cif Gaussians (a so-callcd Gaiissian mixturc; 
scc Scction 8.2). 

A special type [if classifier is the dccisirm tree [22], 1301, 
[129], which is trained by an iterative st!lcction of individual 
fcntures that are most saliciit at each node of the tree. 'llic 
criteria for feature sulcction and tree gcncratioii iiicludc tlic 
information contcnt, the node purily, or Fisher's criterion. 
During classification, just those featmes are undcr con- 
sideration that are needed for the test pattern under 
consideratinn, so feature selection is implicitly built-in. 
The must commonly uscd dccision tree classifiers are binary 
in nature and use a single fcature at each node, resulting in 
decision boundaries that are parallel tn the feature axes 
[149]. Conscqucntly, such decision trees are intriiisically 
suboptimal l o r  most applications. However, thc main 
advantage of the tree classifier, besides i t s  spccd, is the 
possibility to interpret the decision rule in terms of 
individual features. 'l'his makes decision trues attractive 
for iriteractivt: iisc by experts. Like neural networks, 
decision trccs can be. easily overtrained, which can be 
avoided by using a priining stage [63], [106], 13281. Decision 
tree classification systems such as CART [22J and C4.5 [129] 
arc available iti the public domaiti4 and therefore, often 
uscd as il benchmark. 

One of the mnst interesting recent developments in  
classifier dcsign is the introduction of tlie supprwt vector 
classificr b y  Vapiiik [I621 which has also bccii stitdied by 
other authors [23] ,  [1441, 11461. It is primarily a two-class 
classifier. l l w  optimization criterion here is the width of the 
margin between tlic classes, i.e., the cinpty area around tlic 
decision boundary defined by the distance l o  the nearcst 
training yntterns. These pnlkrns, called support vectors, 
finally delinc thc classification [unction. Their number is 
minimized by maximizing thc margin. 

Tlic decision function for a two-class problem derived by 
the support vcchr classifier can bc written as follows using 
a kernel iunction TC(s,,a) o f  a new pattern 3: (to be 
classified) and a training pattern 5,.  

D ( z )  = (tiXiIi(Xi,ilZj +(YO, ( i z j  

where ,i* is the support vector set (a subsct of the training 
set), and X i  - fl Ihe label of object 5, .  The parnmciors 
,Y~ 2 0 are optimized during training by 

!/TI t s 

4. l ~ p :  / /www.e,md . c k / i d - x c h i w /  
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TABLE 6 
Classification Methods 

A larger hidden layer may result in overtraining. This is 
illustrated in Fig. 8 for a network with 10 neurons in the 
hidden layer. During training, the test set error and the 
training set error are initially almost equal, but after a 
certain point (three epochs') the test set error starts to 
increase while the training error keeps on decreasing. The 
final classifier after 50 cpochs has clcarly adapted to the 
noise in the dataset: it tries to separate isolatcd pattcms in a 
way that does not contribute to its generalization ability. 

6 CLASSIFIER COMBINATION 
Tncrc arc sevcral reasons for cninbining multiple classifiers 
to solve a given classification problem. Some of them are 
listed bcluw: 

1 .  A designcr may haw acccss to a number nf different 
classifiers, each developed in H different context and 

5. Onr cpndi mcnns gniiig tlirough thr! ciitilr! training data uiice. 

for an entirely different represcnt~ti~ii/desc1.iption 
of tlw some prublcm. An cxainplc is tlic idcntifica- 
ti.on of persons by their wicc, face, as well as 
handwriting. 

Sometimes more than a singlc training sct is 
available, each collected a t  a different time or in a 
different environment. These training sets may even 
USP different features. 

Diffcrmt classifiers trained on thr! samc. data iiiny 
not only differ in their global pcrformanccs, but they 
also may show strong lociil differences. Each 
classifier mny haw its own rcgicm in the fcatiirc 
space where i t  performs the best. 

Some classifiers such as neural networks show 
different rcsults with diffcreiit initializations due to 
the randomness inherent in the training procedure. 
Instead of selecting the best network and discarding 
the others, one can combine various networks, 



JAIN ET AL.: STATISTICAL PATTERN RECOGNITION: A REVIEW 21 

. . -.. - .- 

* 
* 

I 0 

Fig. 7. Decision boundaries for two bivariate Gaussian distributed classes, using 30 patlerns per class. The following classifiers are used: (a) Bayes- 
normal-quadratic, (b) Bayss-normal-iinear, (c) I-", and (d) ANN-5 (a feed-fonvard neural network with one hidden layer containing 5 neurons). The 
regions RI and Jf,i for classes w ,  and 02, respectively, are found by classifying all the points in the two-dimensional feature space. 

thereby taking advantagc. of all the attempts to learn 
from the data. 

In summary, we may have different feature sets, 
different training sets, different classification methods or 
different training sessions, all resulting in a set of classifiers 
whose outputs may be combined, with thc hope of 
improving thc overall classification accuracy. If this set of 
classifiers is fixed, the problem focuses on thc combination 
function. It is also possible io use a f i x e d  combinrr and 
optimize thc sct of input classifiers, see Section 6.1. 

A large number of combination schemes have been 
proposed in the Iiteraturc [172]. A typical combination 
schcmc consists of a set of individual classifiers and a 
combiner which combines thc rasults of the individual 
classifiers to make the final decision. When the individual 
classificrs should be invoked or how they should interact 
with each other is determined by the architecture of the 
combination scheme. Thus, various combination schemes 
may differ from each other in their architccturcs, thc 
characteristics of the cnmbincr, and selection of the 
individual classifiers. 

Various schemes for combining multiple classificrs can 
be grouped into three main categories according to their 
architecture: 1) parallel, 2) cascading (or scrial combina- 
tion), and 3) hierarchical (tree-like). In the parallel archi- 
tecture, all the individual classifiers are invoked 
independently, and their rcsults arc thcn combined by a 
combiner. Most combination schemes in the literature 
belong to this category. rn the gakd paralld variant, the 
outputs of individual classifiers arc sclcctud or weighted by 
a gating device bcforc they are combined. In the cascading 
architect~ire, itidividual classifiers are invoked in a linear 
sequence. The numbcr o f  pssiblc classes for a given pattern 
is gradually rvduccd as more classifiers in the scqucnce 
have been invoked. For the sake of efficiency, inaccurate but 
cheap classifiers (low cnmputational and nieasuremcnt 
demands) are considcrcd first, followed by more accuratc 
and expensive classifiers. In the hierarchical architecture, 
individual classifiers arc combined into a structure, which 
is similar to that of a decision tree classifier. The tree nodes, 
howovcr, inay now be associated with complex classifiers 
demanding a large number of fcalurcs. Thc advantage of 
this architccturc is the high efficiency and flcxibility in 



22 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL, 22, NO. 1 ,  JANUARY 2000 

. .  .__ . . . . . . . . . . . . . . . . . . . . .  - . - ~  ............ 
~ I ..................................................... 

I . . .  trainlng set error 
: I  

I 

; 1  

: n  I..::. .::..:...!es! “‘ error ~~ 

0.2 - q 

\,A . \  ............, 

>.. ............................... 

I .................... ,i ..I .......................... L .................................... 

0 10 20 30 40 50 
Number of Training Epochs 

Fig, 8. Classification error of a neural network classifier using 10 hidden 
units trained by the Levenberg-Marquardt rule lor 50 epochs from two 
classes with 30 patterns each (Dataset 1). Test set error is based on an 
independent set of 1,000 patterns. 

exploiting thP discriminant power of different types o f  
fcaturcs. Using these three basic archilccturcs, we can build 
even more complicated classifier combination systems. 

6.1 Selection and Training of lndlvldual Classifiers 
A classificr combination is especially useful if the indivi- 
dual classifiers arc largely independent, I f  this is not already 
guaranteed by the usc of different training sets, various 
rcsampling techniques like rotation and bootstrapping may 
be used t r ,  artificially create such differences. Examples are 
stacking [3.68], bagging [21], and boosting (Or ARCing) 
[142]. In stacking, the outputs of the individual classifiers 
are used to train the “stacked” classifier. The final dccisim 
is inade based on the outputs OF thc stacked classifier in 
conjunction with the outputs of individual classifiers. 

In bagging, different datasets arc created by boot- 
strapped versions of the original datasck and combined 
using a fixed rulc like averaging. 13oosting [52] is aiiothcr 
resampliiig tcchnique for generating a sequencc of training 
data sets. The distribution of a particular training set in the 
sequence is overrepresented by patterns which were 
misclassified by the earlier classifiers in the sequence. Tn 
boosting, fhc individual classifiers are trained hicrarchically 
to learn to discriininatc more complex regions in the feature 
space. The original algorithm was proposed by Schapire 
[142], who showed that, in principlc, it is possible for a 
combination of weak classifiers (whwx pcrformances are 
only slightly b c k r  khan random guessing) to achieve an 
error rate which is arbitrarily small on the training data. 

Sometimes cluster analysis may be used to separate the 
individual classes in tho training set into subclasses. 
Consequently, simpler classifiers (e.g., linear) may be used 
and combined later to generate, for instance, a picccwisc 
linear r u s d  11201. 

Instead of building different classifiers on diffcrcnt scts 
nf training pathiis, different feature sets may be used. This 
even more explicitly furccs thc individual classifiers to 
contain independent information. An example is the 
random subspacc method [75]. 

6.2 Combiner 
Aftcr individual classifiers have been selected, they need lo 
be combined together by a mudulc, called tlw combiner. 
Various combiners can bc! distinguished from each other in 
their trainability, adaptivity, a i d  rcquircmcnt on the output 
of individual classifiers. Combiners, such as voting, aver- 
aging (or sum), and Borda count [74] are static, with 110 

training required, whilc others are trainable. The trainable 
combiuers may load to a better improvement than static 
combiners a t  the cost o f  additional training as well as the 
requirement of additional training data. 

Some combination schcmes arc adaptive in the sense that 
the combiner cvduatcs (or weighs) the decisions of 
individual classificrs dcpcnding on the input pattern. In 
cnntrmt, nonadaptive combiners treat all the inpiit patterns 
the saiiic. Adaptive combination schemes can furthcr 
exploit the detailed error characteristics and expertise of 
individual classifiers. Examples of adaptive combiners 
include adaptive weighting [l.56], associative switch, 
mixture of local experts (MLB) [79], and hierarchical 
MLE [87]. 

Different combiners expect different types flf output 
from individual classifiers. Xu et al. [I721 gruupcd these 
expectations into three levels: 1) measureincnt (or con- 
fidence), 2) rank, and 3) abstract. At the confidcncc level, a 
classifier outputs a numerical valuc for cach class indicating 
the belief or probability that thc given input pattern belongs 
to that class. At the rank level, a classifier assigns a rank to 
each class with the highest rank buing the first choice. Rank 
value cannot be used in isdatimi bccause the highest rank 
does not necessarily mean a high confidence in the 
classification. At tho abstract level, a classifier only outputs 
a unique class labcl or several class labels (in which case, 
the classes are equally grmd). The confidence level conveys 
the richest information, while thc abstract level contains the 
least amount of information about thu decision being made. 

Table 7 lists a number of representative combination 
schemes and their characteristics. This is by no means an 
exhaustivc list. 

6.3 Theoretical Analysis 01 Combination Schemes 
A large number of oxpcriinental studies have shown that 
classifier combination can improve the recognition 
accuracy. However, there exist only a few thcorclical 
cxplanations for these experimental results. Morcover, most 
cxpIanatioiis apply to only the simplest cnmbination 
schemes under rather restrictive assumpticms. One of the 
most rigorous theories on classifier combination is 
presented by Kleinberg [Sl]. 

A popular analysis nf combination schemes is based on 
the well-known bias-variance dilemma 1641, 1931. Kegres- 
siori or classification ci’ror can be decomposed into a bias 
tcrm and a variance term. Unstable classifiers nr classifiers 
with a high complexity (or capacity), such as dccisinn trees, 
iwircs t neighbor classifiers, and large-sizc ncural networks, 
can have universally low bias, but a large variance. On the 
other hand, stable classificrs ni- classifiers with a low 
capacity can haw n low variance but a large bias. 

Turner and Ghush [158] provided a quantitative analysis 
of the improvements in classification accuracy by combin- 
ing multiple neural networks. They showed that combining 
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TABLE 7 
Classifier Combination Schemes 

I ' -  7 - I -I.-- ~ -1 

nc>tworks using a liiicar coinbiner or order statistics 
combiner redtices thc variance of thc actual decision 
boundaries around t1i.h~ op tiniunz boundary. In the absence 
ofmetwork bias, Lhc reduction i n  the added error (to Bayes 
error) is directly proportional to the reduclion in the 
variance. A linear combination of 11' unbiased neural 
networks with indcpendent and idcntically distributed 
(i.i.d.) crroi  distributions can reduce the variance by a 
hckx  uf N .  At a first glance, this result suuiids remarkablc 
for as N approaches infinity, the variaiicc is redwed to zt'rc). 
Unfortunately, khis is not realistic bccatise the i.i.d. assump- 
tion brmks do\w for large N. Similarly, Perrane and 
Cooper 11231 showed that under tho zero-mean and 
independence assumption on the misfit (diffeerencc. between 
the dcsircd output and the actual output), averaging the 
outputs of neural networks can rcducc the mean squarc 
error (MSE) by n factor of N comprlred to the avcragcd MSE 
ol: thc N neural networks. For a largc N ,  the MSE of the! 
enscmble can, in  principle, be made arbitrarily small. 
Unfortiinately, as mentioned above, the independuiicc 
assumption brcaks down as M increases. Pcrrone and 
Cooper [123] also proposed a gcncralized enscmblc, an 
optimal linear combiner in the least sqii i lrc ci'ror sense. In 
the generalized enscmblc, weights are derived from thc 
errnr corrclation matrix of the N neural networks. It was 
shown that the MSE of thc generalized cnscmble i s  smaller 
than the MSE of the best neural network in thc ciiscnible. 
This rcsult is based on the assumptions that thc rows and 
columns of tho crror correlation matrix are linearly 

independent atid tho error correlation matrix can be reliably 
cstimated. Again, tliccsc assumptions break down as M 
incrcases. 

Kittler et al. [90] dcveloped a c o m ~ n o n  theoretical 
framework for a class of combination schemes whcrc 
individual classifiers use distinct fcaturcs to estiinatc tlic 
pnstcrior probabilities given the input pattern. They 
introduced a sensitivity analysis to explain why the sum 
(or average) rulc outperforms the other rules for the same 
class. T h y  showed that the s u m  rulc is less sensitivc than 
titliers (such as the "prciduct" rule) to the error of individual 
classifiers in estiinating posterior probabilities. The sum 
ride is most appropriate for combining diffcrent estimates 
of the samc posterior probabilitics, e.g., resulting from 
different classifier initializatiuns (case (4) in the inhductinn 
of this section). The product rule is most appropriate for 
combining preferably erl-or-frco indcpeiident probabilities, 
e.g. resulting from wcll estimated densities of different, 
indupcndent feiltiire sels (caw (2) in the introduction of this 
scction) . 

Schapire el. al. [I431 proposed a diffcreizt exp1analioii for 
tlw effectiveness nf voting (weighted avcrage, in fact) 
methods. 'Thc cxplanation is bascd on the r-iotion of 
"margin" wliicli is the difference between thc combiricd 
score of the correcl class and the highcst combined score 
among all thc iiicorrect classes. They established khat the 
generalization error is bounded by the tail probability of the 
margin distribution on training data plus a term which is a 
function ol thc complexity of a single classifier rather than 
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the combined classifier. Thcy dcinonstrated that the 
bonsting algorithm can effectively improve the margin 
distribution. This finding is similar to the property of thc 
support vector classifier, which sliows the importance of 
tmining patterns near the margin, where the margin is 
dcfiiicd as thc area of ovcrlay bctween the class conditional 
densities. 

6.4 An Example 
We will illustrate the characteristics of a nuinher of different 
classifiers and  combination rulcs on a digit classification 
probleni (Dataset 3, see Section 2). 'lhc classifiers used in the 
experiment were designed using Matlab and wow not 
optiinized for the data set. All the six diffcrcnk fcatiirc s c k  
for the digit dataset disciissed in Section 2 will be iised, 
enabling u s  to illustrate the performance o f  various 
classifier combining rulw uvw differcnt classifiers as wcll 
as over different feature sets. Confidence values in the 
ou.tpir.ts of all the classifiers are computed, either directly 
based on the posterior probabilities or on the logistic output 
function as discussed i n  Section 5. These outputs are also 
used to obtain millticlass versions For intrinsically two-class 
discriminants such as the Fisher Linear Discriminant and 
thc Support Vcctor classifier (SVC). For thcsc rwo 
classifiers, a total of 10 discriminants arc comptcd bclwccn 
each of the 10 classes and the cornbincd sct cif thc rcinainjng 
classes. A test pattern is classified by sclecting the class Tor 
which lhu discriminant has the highest confidence. 

The following 12 classifiers arc used (also see Table 8): 
the Eayes-plug-in rille assuming normal distributions with 
different {Bayes-i~ormal-quadratic) or equal covariance 
matrices (nayes-normal-linear), the Nearest Mean (NM) 
rule, 1-N.N, LAN, I'arzen, Fisher, a binary decision tree 
using the niaximum purity criterion [21] and early pruning, 
two feed-forward neural networks (based on thc Matlab 
Neural Network Toulbox) with a hiddcn laycr coiisisting cif 
20 (ANN-20) and 50 (ANN-SO) neurons arid tlic linear 
(SVC-liiicar) and quadratic (SVC-quadratic) Supporl: Vcctnr 
classifiors. Tlic number o f  neighbors in tlio k-NN rule and 
tlic smoothing paramotcr in tlic Parzcn classificr arc both 
op timizcd over tho classificatiun result using tho loavc-ono- 
out error estimate on tlie training set. For combjtiiiig 
classifiers, the median, product, iind voting rules are used, 
as wcll a s  two trained classifiers (NM and :l-'NN). Thc 
training set used for the individual classifiers is also used. in 
classifier com.bii~atioiz. 

The '12 classifiers listed in Table 8 were trained on the 
same 500 (10 x 50) training patterns from each of the six 
feature sets and tested on the same 1.,000 (10 x 100) test 
patkrns. 'I'he resulting classification errors {in percentage) 
arc reported; for each feature set, tlie best result over the 
classifiers is printed in bold. Ncxt, the 12 individual 
classifiers for i> single feature set were combiiicd using the 
five combining rules (median, product, voting, nearest 
mean, and 1:"). For example, the voting rule (row) ovcr 
bhc classiliicrs using fcatiirc set Number 3 (column) yields 
an  error of 3.2 percent. It is underlined to indicate that this 
cornbination result is better than the performance of 
individual classifiers for this feature set. Filially, tlie outputs 
of each classifier and each classifier combination schcmc 
m7er all the six feature sets are combined using thc fivc 

combination ~ L I I C S  (last f iw  columns). Fur uxamplc, 1he 
voting rule (culumn) over the six decision tree classifiers 
(row) yields an crrur r)f 21.8 pcrccnt. Again, it is tindertined 
10 indicati. that h i s  combination result is better than each of 
thc six individiial results of the decisioii tree. The 5 x 5 
blnck in the bottom right part of Table 8 presents the 
coinbinntioii rcsulls, ovc~ '  tlie six feature sets, for the 
classifier combination schemes for each of the separate 
foaturc sets. 

Sriinc o f  tlic classifiers, for example, h e  decision tree, do 
not purforni wcll on this data. Also, the neural network 
clnssificrs providc ratlicr poor optimal solutiotis, probably 
duc to noiicoiivcrgjng training sessions. Some of the simple 
clnssilicrs such as tho l-NN, Baycs plug-in, a n d  I'arzen give 
good rcsults; the perkmnanccs of d iffei-ent classifiers r7ary 
substantially ovcr diffcrcnt fcaturu sets. Due to the 
rclativcly small training sck for soinc uf the large feature 
sck, tho Baycs-normal-quad I-ati c classifier is outperformed 
by Lhc linear ono, but the SVC-quadratic generally performs 
better than the SVC-linear. This shows that the SVC 
classifier can find nrmlincar solutions without increasing 
thc ovcr kraining risk. 

CunsicIcring-tlic classiiicr comnIination rcsu~ts, it appears 
that the tmined classifier coinbination iulcs arc not always 
bettcr than the use of fixed rulcs. Still, thc bcst ovcrall icsult 
(1.5 percent error) is obtained by a trained combination rule, 
the nearest mcan mcthod. Tlic coiiibiiiahi o f  different 
classificrs for thc sainc kcatill-c sct (columns in the table) 
only slightly improves the best individual classification 
rcsults. 'I'hc best combination rule for this dataset is voting. 
Thc product rulc bchaves poorly, as cc711 be expected, 
bccausc difforcnt classificrs oil tlic same feature set do not 
provide indepcndcnt crmfidcnco vnlucs. TIic ct)mbination of 
results obtained by the same clnssificr over different feature 
sets (rows in the table) frcqucntlp outpcrforms the bcst 
individual classifier restdt. Sometimes, the improveinents 
are substantial as i s  tlie case for. the decision tree. Here, the 
product rule does niucli better, but occasionally it performs 
surprisingly bad, similar to the combination of neural 
network classifiers. 'L'his combination rule (like the mini- 
mum and maximum rulcs, not uscd in this experiment) is 
sensitive to poorly trained individual clnssificrs. Finally, it 
is wortlirvhilc to observe that in combining khc ncural 
network results, the trained combination rulcs do very well 
(classification errors between 2.1 percent and 5.6 percent) in 
comparison with thc fixed rulcs (classificatiun errors 
between 16.3 percen t to 90 percent). 

7 ERROR ESTIMATION 
The classification error 01' simply thc i?ri'or ratc, c, is tlw 
ultimate measure of the performance of ;I classifier. 
Competing classificrs can also bc evaluated based on 
their emir probabilities. Other performance muasuws 
iiicludc the cost of mcasuring fcaturcs and thc computa- 
tional requirements of tlw dccisioii rrilc. Whilc it is easy 
to define thha probability d error in terms of thc class- 
conditional dcnsitics, il is vcry difiictilt to obtain a closed- 
form cxprcssion for P,. Even in thc rclativcly siniplc cast! 
c i f  multivariatu Caussian densities with unequal 
crwariaricc malriccs, il is not possible I'o write a simple 
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analytical cxpression for thc crroi. rate. If an analytical 
expression for the error ratc was  available, it could be 
wed,  f o r  a given decision rdc ,  to study tlic behavior of 
!<! as a function of the numbcr of features, true parameter 
values nf thu densities, ~ ~ u m b o r  of training samples, and 
prior class probabilities. Fnr consistent training rules the 
value of P,! approaches the Baycs error for increasing 
sample sizus. For some families of distributions tight 
bounds for khc b y e s  error may be obtained 171. For finite 
sample sizcs and unknown distributions, howcver, such 
bounds arc inipossible [6], [41]. 

I n  practice, the error rate of a recognition system must be 
cstimated from all tlic available samples which are split into 
training and test sets [70]. The classificr is first designed 
itsing training samples, and then it is cvaluated bascd on its 
classification pcrformance on tlic k s t  saiiiples. Tho percen- 
tage of misclossified test samples is taken as an estimate of 
the error ratc. In order for this crror estimate to be reliable 
in predicting futuri! classification pcrformance, not only 
should the training set and the test sct be sufficiently large, 
but the training samldes and the tcst samples must be 
indcpcndent. This rcquirement of indcpcndent training and 
test samples is still oftcn overlooked in practice. 

An important point to keep in mind i s  that thc error 
estimate of a classifier, being a fuiicction of thc specific 
training and test scts used, is a random variablc. Given a 
classifier, suppose T is the nuinber of test samples (out of 
a total of ,n) that are misclassificd. It can be sliown that the 
prubability density function of T has il binomial distribu- 
tion. &'l'hc maximum-likelihui)d estimate, k!, of P, is given 
by I', 7 r/n, with E(  ec) = P, nnd 7 e:(1 ~ Pc)/n. 
Thus, I:: is an unbiased and cnnsistcnt estimator. Because .cp is a random variable, a confidcncc interval is associated 
with it. Supposc 11 = 250 and T = 50 then P, = 0.2 and a 
95 percent confidence interval of FE is (O.lS,O.Z5). The 
confidetm interval, which shrinks as the numbor 11 of test 

samples increases, plays an important role in comparing 
two competing classifiers, Cl and C2. Suppose a total uf 
100 tcst samples are available and Cl and C, misclassify 10 
and 13, respectively, of these samples. 1s classificr GI better 
than C2? The 95 perccnt confidence intervals for the true 
errnr probabilitics of these classifiers a14c (0.04: 0.16) and 
(fl.OO,0.20), rcspectively. Siiice Lhcsc confidence intervals 
overlap, w e  cannot say that the performance of Cl will 
always be superior to that of 4. This analysis is somewho1 
pessimistic duc to positively correlated crroi' estimates 
based 011 1hc same test set [137]. 

Hiow should the availnblc samples be split tu form 
training and  test scts? If the training set is small, then thc 
resulting classifier will not be very robust and will have a 
low generalization abiliby. On the other hand, if the test sct 
is small, then thc confidence in the cstimakcd error rate will 
be luw. Various methods that are commonly used to 
cstimate the error rate are summarizcd in Table 9. 'I'hcsc 
methods differ in how they utilize the available samples as 
training and tcst sets. If the numbcr of available samplcs is 
extremely large (say, 1. million), tlicn all these methods are 
likcly to lead to thc same estimate of the error rate. h r  
example, while it is well known that thc rcsttbstitutioi~ 
method provides a n  optimistically biased estimate of thc 
error rate, tlie bias becnmcs smaller and smallcr as  the ratio 
of the numbcr of training samples per class to tlie 
dimensionality of the feature vector gets larger and larger. 
Thcre are 110 good guidelines available on how to divicic the 
available samplcs into training and test scts; FLI kunaga [58] 
provides arguments in  favor of using more samples for 
testing thc classifier than for designing the classifier. Ni) 
maktcr how the data is split into training and test scts, it 
should be clear that different raiidoiii splits (with the 
specified size of training and test sets) will rceult i n  
di ffccrcnt error estimates. 
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TABLE 9 
Error Estimation Methods 

I .  

Fig. 9 shows the classification error of the Bayes plug-in 
linear classifier on the digit dataset as a function of the 
number of training patterns. Tho test sct error gradually 
approaches tlie training set error (resubstitution error) as 
the number of training samples increases. The relatively 
large difference between these two error rates for 100 
training patterns per class indicates that the bias in these 
1wo wrw cstiinates can bc furthcr reduced by enlarging thc 
training set. Both the curves in this figure represent the 
avemge of 50 experiments in which training sets of the 
given size are randomly drawn; the test set of 1,UUO patterns 
is fixcd. 

Thc holdoul, leave-ane-rml, and rotation methods arc 
versions of tlic! cross-validation approach. Onc o f  thc 
main disadvantagcs of cross-vnlidatirm mcthods, cspc- 
cially for small snmplc size siimtions, is t11a1 not a11 the 
available samples are used for. training the classifier. 
Further, the two extreme cases of cross validation, hold 
out mcthod and Icavc-uno-out method, suffer from cithcr 
large bias or large variance, respectively. To overcome 
this limitation, tho bootstrap method [48] has been 
proposed to estiinatc the wrm rate. Thc. brwkstrap mcthod 
resamples the available patterns with replacement to 
gcmratc a numbcr of ”fake” data sets (typically, several 
hundrcd) of th:hc Same size as the given training set. These 
new training sets can bc uscd not only tn cstirnatc the 
bias of the resubstitution cstimatc, but  also tu  ddiiic 
other, so called bootstrap estimates of the error wte. 
Experimental results have shown that thc bunktrap 
estimates can outperform thc crnss validatinn cskimatcs 
and thc resubstitution estimates of the error rate [82]. 

In many pattern rccognitim applications, it is not  
adequate to characterize the performance of a classifier by 
B singlc niimbcr, P,, which iiicasures Ihc overall error rate 
of o systcm. Consider t11c prciblein of evaluating a 
fingerprint matching system, where two different yet 
rclated ermr ratcs arc of interest. Thu False Acccptance 
Itate (E’AIZ) is the ratio of the number of pairs of different 
fing~rpi~ints that arc iiictxrectly matchcd by a given system 
to the total number of match attempts. The False Reject Rate 
(FRR) is thc ratio of the number of pairs of the same 
fingerprint that are not inatcliod by a givcii system to thc 
total number of match attempts. A fingerprint matching 
system can be tuned (by setting an appropriate threshold on 
the matching score) to operate at a desired value of FAR. 
However, if we try to decrease the FAR of the system, then 
it wciuld increase the F1ZK and vice versa. The Receiver 
Operating Characteristic (ROC) Curvc 11071 is a plot uf FAR 
versus FRR which permits the system designer to assess the 
performance of the recognition system at various operating 
points (threshr~lds in the decision rule). In this sense, KOC 
provides a more comprehensive performance measure than, 
say, tlw cqual error rate of the system (where FRR = PAL<). 
Fig. 10 shows thc ROC curvc for thc digil datasct whcrc thc 
Baycs plug-in lincar classifiur is Lrained on 100 patLenis per 
class. Examples of the usc of ROC analysis arc coinbining 
classifiers 11701 and feature selection [993, 

I:n addition to the error rate, another useful perfor- 
malice measure of a classifier is its reject rate. Suppose a 
test pattern falls near the decision boundary between the 
two classes. While the decision rule may be able to 
correctly classify such a pattcm, this classification will be 
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made with a low confidcncc. A better alternative would 
bc to reject these doubtful patterns instcad of, assigning 
them to one of thc categories under consideration. How 
do we decidc when to rejecl a test pattern? For thc Bayes 
dccisiom rule, a well-known reject option is to reject s 
pattern if its maximum a posteriori probability is  bclow a 
threshold; the larger the threshold, the higher thc reject 
rate. Tnvoking the reject option reduces thc wroc rate; the 
largcr the reject ratc, thc smaller tlic m o r  rate. This 
relationship is Icprcsented as an error-reject trade-off 
curve which can bc used to set the desired opcraliiig 
point of tho classifier. Fig. 11 slimvs the error-rLj cct ctirve 
for the digit dataset when a Bayes plug-in linear classifier 
is used. This ciirvc is monotonically iioii-increasing, since 
rejecting inmc patterns eithcr reduces the Prror  rate or 
keeps it the same. A good choice for ~ h c  reject rate is 
bnscd 011 tlie costs associated with rvjcct ancl incorrect 
decisions (SCC I661 for an applied example nf the use of 
error-reject curves). 

8 UNSUPERVISED CLASSIFICATION 
In many applications of pattern recognition, it is extremely 
difficult or cxpcnsive, or eveii impossible, to reliably label n 
training samplc with its true category. Consider, for 
Example, tlie applicatim of land-use classification in rcinotc 
sensing. In cirdcr to obtain the “ground truth” information 
(catcgwy for each pixel) in tlic image, either the specific site 
associated with the pixel. should bc visited or its catcgory 
should be extracted from a Geographicnl Information 
System, i f  onc is available. Unsupcrvised classification 
rcfcrs to situations whcrc the objeclivr is to construct 
decision boundaries based on unlabelcd training data. 
Unsupervised classification is also known as data clustering 
which is a generic label for a varicty of procedures designed 
to find natural groupings, or clusters, in multidimciisional 
data, based on rncasurcd or perceivcd similarities m ” g  
the patterns 1811. Category labels and other information 
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Fig. 10. The ROC curve of tho Bayes plug-in linear classifier forthe digit 
dataset. 

about the sotirce of khc data influence the interpretation of  
the clustcring, not the fnrmation of the clusters. 

Unsupervised classification or clustering is a w r y  
diffkiilt problcm because data can rcvcal cltisters with 
different shapes and sizes {see Fig. l2). ‘1-0 compound the 
prublein further,  the number of clusters in the data oftcn 
depends on the rcsoliition {fins vs. coacsc) with which we 
view the data. Ono cxample of clustering is the detection 
and ddiiioation of a region coiltailling ii high dcnsity of 
patterns compared to the background. A numbcr of 
hmctiolzal definitions of a cluster have bocn proposcd 
which include: 1) patterns within a cluster are mom similar 
to each other than are pattcrns belonging to different 
clusters and 2) a cluster consisls of a relatively high dcnsity 
of points separakl fi.om other clusters by n relatively low 
dcnsity of p in ts .  Bvcn with these functional dcfinitions rrf a 
cluster, it is not easy to cmnc up with an operational 
definition of clustcrs. 01ie of the challciigcs is to seloct ill1 

appropriate measure r)f similnrity to define cluskcrs wl.~ich, 
in gciicral, is both data (cluster shape) and context 
dcpendent. 

Cluster analysis is a very important ancl useful tcchni- 
que. ?‘he spocd, reliability, and ccmsistcncy with wliich a 
clustcring algorithm c m  organize large amounts of data 
uonstitutc uverwhelming rcasons to use it in applications 
such as data mining [MI, inkorinntion retrieval [17], [25] ,  
image segmentatinn 1551, signal coinprwsion and coding 
[‘l], and iiinchiiie learning [25]. As a conseyenco, huiidreds 
of clustering algorithms h a w  bccn proposed i n  tlie 
litcrature and  iicw cliistering algorithms continue to 
appear. However, mnsl of these algorithms arc based rm 
thc following two pupiilar clustering techniques: itei-ativc 
square-ctror partitioinal clustcring and agglomerative hier- 
archical clusl-c.ring. Hierarchical (cchniques organize data in 
a nestcd scqiieiice of groups which can be displayed in the 
form of a dendrogram or a trcc. Square-error partitional 
algorithms attempt to ubhiiii that partilion which minimixes 
the within-clus tcr scatter or maxiinizcs the betwetin-cluster 
scatter. To guarantee that a n  optimum solution has been 
obtained, one has to cxaininc all possible partitions nf tlic n. 
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Fig. 11. Error-reject curve of the Bayes plug-in linear classifier for the 
digit dataset. 

d-dimensional patterns into Ji' clusters (for a given IT), 
which is not computationally feasible. So, various heuristics 
arc uscd to rcducc thc scarch, but then t h r c  is no guarantci. 
of optimality. 

Partitionill clustering techniques are used more fre- 
qiiently than hierarchical techniques in pattern recognition 
applications, so we will restrict our coverage to partitional 
mcthods. Rccent studics in cluster analysis suggcst that a 
user of A cluskring algorithm should kcep the following 
issues in mind: 1) every clustering algorithm will find 
cliisters in a givcn datasct wholhur they cxist or not; the 
data should, therefore, be subjected to tests for clustering 
tendency before applying a clustering algorithm, followed 
by a validation of the clusters generated by the algciriitim; 2) 
there is no "best" clustering algorithm. Therefore, a user is 
advised to try scvcral clustcring algorithms on  R 

givcn dataact. Further, issuus of data ctrllcclion, data 
reprcsmitation, normalization, and cluster validity are as 
important as the choice of clustering strategy. 

The problem of partitional clustering can be formally 
stated as follows: Given n patterns in a d-dimensional 
mctric space, determine a partition of the patterns into fc 
clusters, such that the patterns in a cluster are more similar 
to each other than to pattcrns in different clusters [MI. Thc 
value of  K may nr may not be specified. A clustering 
criterion, either global or local, must be adopted. A g loh l  
criterion, such as squwe-error, represents each cluster by a 
prototypc and assigns the patterns to clusters according to 
the most similar prototypcs. h lucd critcrion forins clusters 
by utitizing local structure in the data. For example, clusters 
c m  be formed by identifying high-dcnsily regions in thc 
pattcm spacc or by assigning a pattern and its k nearest 
neighbors to thc same cluster. 

Most of tlie partitioiial clustering techniques implicitly 
assume con tinuous-valued fcahirc vectors so that the 
patterns can be viewed as being embedded in a metric 
space. If  the features are on a nominal or ordinal scale, 
Euclidean distances and cluster ccntcrs arc not very 
meaningful, so hicrarchical clustering methods are nor- 
mally applied. Wong and Wang [169] proposed a clustering 

Fig. 12. Clusters with different shapes and sizes. 

algoritlim €or discrctc-valued data. The technique of 
coiiceptiiill clustering or learning from cxamplcs [ 11)8] can 
bc uscd with pattcrns rcprcscntcd by nonnumeric or 
symbolic descriptors. Thu objeclive here is to group patterns 
intn cnnceptually simple classes. Concepts are defined in 
terms of attributes and patterns are arranged into a 
hi~rarcliy of classes described by concepts. 

In the following subsections, we briefly summarize the 
two most popular approaches to piirtitioiial clustering: 
square-error clustering arid mixture decomposition. A 
square-error clustering method can bc viewed as a 
particular case of mixture decomposition. We should also 
point out the difference between a clustering criterion and a 
clustering algorithm. A clustering algorithm is a particular 
implcincnhtion of  a clustcring criterion. In this sense, there 
are a large number of square-error clustering algorithms, 
each minimizing thc squnrc-error criterion and differing 
from the others in the choice of the algorithmic parameters. 
Some of the welL-known clustering algorithms are listed in 
Table .l.O [81]. 

8.1 Square-Error Clustering 
The most commonly uscd partitionnl cluslering s tratcgy is 
based on the square-error criterion. Tlw gciicral objcctivc 
is to obtain that partition which, l o r  a fixed number o f  
clusters, minimizes thc squarc-m"'. Suppose that the 
given set of TL patterns in d dimcnsions has somehow 
bwn partitiuncd into K clusters {C',~ C ' 2 ,  ' ' , C:} such Lhat 
clustcr CA has ' I L L  patterns and cach pattern is in cxactly 
m e  cluster, so that EL, 'q :- : n.. 

The mean vcctor, or ccntcr, r)f clustcr Cl, is defined as tlic 
centroid of tlie clustcr, or 

(Id)  

where x!" is the ith pattern belonging to cluster Ck. The 
square-error For cluster L', is tlie sum of the squared 
Euclidcan distances between each pattern in CA and its 
cluster ccnter m(k). This squarc-wror is also cnllcd tlic 
within-cl irstei- variation 

Thc squarc-crror for thc cntirc cluskcring containing IC 
clusters is tlic sum of thc within-clustcr variations: 
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TABLE 10 
Clustering Algorithms 

K -mt?an R 

Mutual Nciihorrhritd 

SinjjeLink (5L) 

. ._ - -- 

The objcctive of a square-crrur clustcriiig inethod is tn find n 

p a i ~ i t i o i i  cotihiniiig .IC clristcrs that miiiiriiizcs for a 
fixcd IC. The resulting partition has also bccn referred k o  as  
the miiiitiium variance partition. A general algorithm for 
the iteralive partitional cluslcriiig inethod is givcn below. 

Agori Ihm foi. i teralivc pnrtitiorlal c I uskring: 

Stcp I. Sclect an initial piirtition w i h  I< clusters. Kcpcat 
stcps 2 throiigh 5 unlil tlic cluster mciiibcrship stabilizes. 

Slcp 2. Generak a ncw partition by nssigiiing each pattwn 
to its closest cluster center. 

Stcp 3 ,  Crnnputc new r lustcr  ccntcrs as the ccntroicis of the 
clusters. 

Slcp 4. Rcpcat steps 2 and 3 until a i l  optimum value of: thc 
criterion f u n c h i  is found. 

S k i ?  5 ,  Adjust tho nuinbcr of clustc!i's by mei:ging and 
splitting cxisting clusters or by removitig small, 01'  

oiitlicr, 'clustrrs. 

The above algodlm, without step 5, is  alst) known as thc 
K-means algorittim. 'rhu dctails of the steps in this algorithm 
must eitlicr bc supplied by the USCT as parameters or be 
implicitly hidden in thc computer propmi. [ [orvcver', thcsc 
dctails arc crucial to thc S U C C ~ S S  of tlw program. A big 
frustration in using clustering progranis is the lack of 
pi i  d el iiws avnilablc for choos i ng A", initial partition, updating 
the parlilioii, adjusting the nurnbcr of clusters, and the 
stopping cribxion [&I. 

Thc simple IC-tncniis partitioiial dustwing algorikhm 
describcd abovc i s  coinpiitationally efficient and gives 
surprisingly good resul~s if tlw clusters a rc  compack, 
hypcrsphcrical i n  shape and well-separated i r i  the featiirc 
space. If the Mahalanobis distance i s  used in defjniiig ilic 
sqiiarcd crror in ( lh) ,  tlwn the algoritlim is wen ablc to 
detect hyporcllipsoidal shapod clusters. Numerous 
iitienipis h a w  bccn made to impriivo the performance of 
the basic IC-means a l g o r i h i i  by 1) incorporating a fuzzy 
criterinn function lis], resulting in a fuzzy ~ - ineans  (LIT 

r:-mcans) algorithm, 2) using genetic algorithms, simiilakcd 
armding, deterininiskic annealing, and tabu scarch to 
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optimize the resulting partition [ l l O ] ,  [l39], and 3) mapping 
it onto a neural nulwork 1'1031 for possibly cfficicnt 
implementation. tlowcvor, many o f  tliosc so-called 
enhancements to the K-moans algorithm arc' computation- 
ally demanding and q u i r e  additional uscr-spccilicd 
parameters for which no general guidclincs arc nvailablc. 
Jtxdd et al. 11181 show that a combination of algorithmic 
enhanceinents +o a sqtiarc-c!rror clristcring algrwithni and 
distribution nf the computations Over a tictwotk o f  
workstations can be used to cluster hundreds of thousands 
of multidimensional patterns in just rl fcw mitiutw. 

It is ii-ikc'rcsting. bo nokc how sccmingiy diifcrcnt concepts 
for partitioiial clustering can lcad ti, cssc?ntially bhc s m "  
algorithm. It is easy to wrify that Lhc gcncra1izc.d Elnyd 
vcctr~r quanhzation algorithm uscd in thc commutiicaiion 
and compression domain is equivalent to the K m e a n s  
algorithm. A vcclur qiiantizcr (VQ) is duscribcd as a 
cr,mbinakirm of an cncodcr and a dccodcr. A tl-dimensional 
VQ consists of two mappings: a n  encoder :, which maps the 
input alphabet (A) to the channel symbol set (M), and a 
dccndcr (9 which maps klic chanric!l symbol sc?k (Mj ti, Lhc 
output aIpIiabet (A), i.e., + j  : A - M and p(v) ; kr + A .  
A distortion measure 'P(sl yj)  specifies the cost associ<itrd 
with quantization, where 6 = $ ( : ( ( : ( j ) ) ,  Usually, a11 optiiniil 
quantizer minimixs thc averagc distortion mdcr a size 
constraint on M. Thus, the problem of vector qiiantization 
can be posed as a clustering problem, where the nuiiiber. of 
cjustcrs I< is nnw the sizc of the output alphabet, 
A : {Iji, i -- 1 , .  . . K ) ,  and the goal is fr, lind n quaiilization 
(referred to as a partition in thc IC-mcans a1gr)rithm) of tlic 
&dimensional fcahirc space which miniiniscs thc average 
distortion (mean squarc crror) of tlic input pattcms. Vcctor 
quantization has bwn  widely used in ii muiiibcr r)f 
coinprcssicin aiid coding applications, such as spwcti 
wavcforni coding, iinngc coding, etc., wliorc on ly  khc 
symbols h r  thc output alphabet o r  the cluster centers are 
transmittcd inskcad o f  thc enlire signal 1671, 1321. Vcctor 
quantization also p v i d e s  an cfficicnt tuul for density 
estimation [68]. A kernel-based approach (e.g., R mixture of 
C;aussisii kernels, where each kernel i s  placed at a cli ister 
ccntcr) can be used to cstiinatc thc probability dcnsity of thr  
training snmplcs. A major issuc in VQ is the sclcction oi thcl 
output alphabet size. A number of techniques, siich as the 
minimum dcscription lcng th (MDL) principle 113x1, can be 
used to sclect this paramcltur (see Section 8.2). The 
supervised vcrsion o f  VQ is called Icarning vricLor quantiza- 
tion (LVQ) 1921. 

8.2 Mixture Decomposition 
Finite mixtures a r e  a flexible aiid powerful probabilistic 
modcling tool. In statistical paltcrn recognition, the m a i n  
use 01 mixtures is in defining formal (i.e., model-based) 
ayproaclics to unsuporviscd classilicatirm [HI. '1'Iip reason 
bclund this is that mixlurcs adequately model situations 
where each pattern ha5 bccn prtiductld by onc (11' a set of 
alternative (prolsabilisticall y modolcd) sourccs (1% I .  Ncvcr- 
theless, it should be kept in iniitd that strict adhcrcncc t u  
this interpretation is not reqiiircd: iiiixtiircs caii also bc sccn 
as a class of models that are able to reprcscnt arbitrarily 
complex probability dcnsity funclions. This makcs mixtures 
also well suitcd for  rcprrwnting cumplex class-condit ional 

densities in supwviscd leartiing scenarios (see [I371 and 
refcrenccs thcrein). Finite! niixturcs caii also be used as a. 
feature selection tool [ 1271. 

8.2. I Basic Definitions 
Consider the following scheme for gciicraling random 
samples. There are Ti random soiirccs, cach charactcrizcd 
by a probability (mass or density} fitnction p,,~(ylO.zr,), 
paramctcrizcd by 0 ",,, Cor rii. - 1 ,  ..., ii. Each  time a sample 
is to bc gcncratcd, WP raiidrmily choose one of these 
soiii'ccs, with probabilities (n13 ...! n.),], and thcn sample 
from the clioseii sotme. Thc riinclom varinblc dcfiricd by 
this (twn-stage) coimpouiicl generating mochnnism is chnr- 
actcrizcd by a finitr? mixture distribution; formally, its 
pbab i l i t y  function is 

ir,- I 

whcrc c;icli p,),(ylO(,)) is callcd a coinponetit, and 
@)i,rj = { U , -  , . . > U l < ! < k I :  ...! R!<. , } .  I t  is iisunlly assuiiicd thal 
all the components liave the samu functional form; for 
example, they i1l.e all multivariate Gaussian. Fitting a 
mixture model to a set of observations y : {y(1j:...qy(72)} 
consists nf cstimating the set of iiiixture parameters that 
best describe this d a t a .  Althougli mixtures C ~ U I  be built from 
many ciiffcreiit typcs of coniponiwts, h e  majority oC the 
lilcralurc ~ocust~s on (;aiissian 111 ixtii res [:I 551. 

Thc two fuudamcnhl issui.s arising i n  mixture fitting 
are: 3 . )  how to cstiimtc the parnmctcrs defining khc iuixture 
model and 2) how to cxtimatc thc iiumbor o f  crnnponunts 
[ I N ] .  For thc Cimt question, the staitdiird answer is the 
q r : c l n  I io 17 - m x  iir 1 izo tion (EM) algorithm (which, 1111 der mild 
conditions, converges to the maximum likelihood (MI.,) 
cstimatc of tht! mixturc paramclers); scwral  authors have 
also ad\wcatcd the (coiiipuiaiioiially demanding) Mnrkov 
chriiii Moritc-Cirrlo (MCMCI) method [I 351, The aucond 
rpostion is iziorc. difiicult; w v c r a l  tcchniqiies have been 
proposed whicli are surnmarizud in Section 8.2.3. N o k  (lint 
the nutput  nf tliP iiiixtiire decoiiiposition is 3s good as tlic 
vnlidity of thc assumud component distributions. 

8.2.2 EM Algorithm 
Thc cxpcctatioii-inaximiztltioti algorithm interprets the 
given observations y as iircourrrpicfr clatn, with the missing 
part being a set of labcls associated w i h  y ,  

jl; r {x"; ! .... dh)}, 

Missing varinblc zc') -- :z\' $.)I"' indicates wliicli of ttie rc 
compoiicnls gcncrntml ?/ I it was the ./rlth coniponent, 
then ZIP = I and 2;:) = O, for p + ' in  (1551. 111 t~ic prcscncc of 
both y nncI A, thc (complete) log-likelihood can be writtenas 

(18) 

Thc EM algori thtn proccwls by alternatively applying the 
following two skcps: 
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E-stcp: Compute thc conditional cxycctation of the 
complete lag-likcliho_od (given y and the currcnt 
parxvetet cstiinate, @(yo). Sincc (la) is linear in the 
missing variables, tlie &-step h r  mixtures reduces to 
the computalion of the conditional expectaiitm of the 
missing variables: if)!;:) ~ [ ~ ~ j @ & .  y], 
MI-step: Update the parameter estimatcs: 

For tho mixing probabilities, this bccriincs 

‘In thc Gmssian caw,  cadi U,,, consists of a mean 
vector and a. covariance matrix which arc updated 
using weightcd versions (with weights S!::’)) uf  the 
standard ML estimates 11551. 

The main difficulties in using EM for mixture model 
fitting, which are current research topics, are: its local 
nature, which makes it critically dependent on initialization; 
the possibility of convergence to a point on the boundary of 
the parameter spacc with unbounded likelihood (i.e., onc of 
the e,,, approaches zcro with the corresponding covarianct! 
becoming nrbitia ril y clrw to siizgula r ) .  

8.2.3 Estimating the Number of Components 
The MI, criterion can izot be used to cstimate thc number of 
mixlure ccliiiponents bccausc the maxirnizcd likelihood is a 
imtidecrcnsing function of K ,  thereby making it useless as a 
model selection criterion (selecting a value for IC in this 
case). This is a particular instance of the idcntfiiabilify 
problem where fhc classical (xy-basd) hypothesis tcsting 
cannot bc used because thc iiccessary regularity conditions 
are not inct [155[. Several altcriiative apprtiaches that h a w  
been proposed arc summarizcd bclow. 

E’M-bawd approaches use tlic (fixed K] EM algorithm to 
obtain a sequu~ce of paramctur estimates for R range of 
values of A’, { (3[,(, ~ .K = IC,,,!,, ~ _ .  . i  KI,,j,x}; the cstiiiiate of K 
is then defined as the minimizer of some cost function, 

Most oftciz, this cost function Includcs the maximized log- 
likelihood function plus an iidditional tcrm 5vlzose rolc is to 
penalize largc valttes of IC. An obviotts choice in this class is 
to use the minimum description longth (MDI-1 criterion [lo] 
[138], but several other model sdcction criteria have been 
proposed: Schwarx’s Bayesian inference critcrioii (]>IC), thu 
minimum mcssnge length (MML) criterion, and Akaike’s 
information criterion (AIC) 121, 11481, [167]. 

Resampling-bnscd schemes and cross-validation-type 
approaches have also been su ggestcd; these techniques are 
(somputationally) tnuch closer to stochastic algorithms than 
to the methods in the previous paragraph. Stochastic 
approaches gcncrally involw Markov chain Monte Carlo 
(MCMC) 11351 sampling and arc far more computationally 
intensive than EM. MCMC has bccn used j t i  two different 
ways: to implement model selection criteria to actually 
estimatc IC; and, with a mtm “ful1.y Bayesian flavor”, to 

sample from the full rl pusturiori distribution where IC is 
included as a n  unknown. Despite their formal appcal, we 
think Lhat MCMC-based tcchniqucs ~ T F  still far too cnmpu- 
tationally demanding to be useful in pattcrn recognition 
applications. 

Fig. 13 shows an example of mixture decomposition, 
where IC is selected using a modified MDL critcrion [SI]. 
Thc data consists cif 800 two-dimensional pattcriis distrib- 
uted Over throc Gaussian componcnts; two of the compo- 
nents have the samc mean vector but different covariance 
matrices and that is why one dense cloud of points is inside 
another cloud of rather sparse points. The level curve 
contours (of constant Mahalanobir distance) for thc true 
underlying mixture and the estimatcd mixture are super- 
imposed an the data. For details, see [Sl]. Nok that a 
clustcriiig algorithm such as IC-means will not be able to 
idenlify these three componcnts, due to the substantial 
ovcrlap of two nf thcsc components. 

9 DISCUSSION 
In its early stage of dcvcloyment, statistical pittern recogni- 
tion focused mainly on the core of the disciplinc: The 
Bayesian decision rule and its variclus derivatives (such as 
liiieai: and quadratic discriminant functicms), density estimn- 
tion, the cursc cif dimensionality problem, aiid e r r w  
estimation. h e  to the limited computing powcr awilablv 
in thc 1960s and 1370s, skatistical pattern rccognition 
employed rclalivcly simple t e c h  iqws which were applied 
t n  small-scale problems. 

Since the early 1‘3ROs, statistical yattern rcctipition has 
expericnccd a rapid growth. Its frontiers h a w  been 
expanding in many dircctinns simuItaneously. This rapid 
expaiisioii is largely driven by tlie following forces. 

Increasing intcraction and collaboration anioiig 
different disciplines, including neural networks, 
machine lcariiing, statistics, mathcmatics, cornputer 
scionco, and biology. ‘I’hcsc mdtidiscipli nary efforts 
have fostered iicw ideas, methodologics, and tech- 
niques which enrich tlw traditional statistical pattern 
recognition paradigm. 
The prcvalciice of fast proccssors, thc Internet, large 
and inexpcnsive memory and storngc. The advanccd 
computcr teclinology has made it possible to 
implcment complex lcarning, searching and optimi- 
zation algorithms which was not feasible a few 
ducadcs ago. It also allows its to tackle large-scale 
real world pattcrn recognition problcms which may 
involve millions of samples in high dimensional 
spaces (thousands of features). 
Emerging applications, such as data mining and 
document taxonomy c reat inn and iii aintcnance. 
‘L’hesc cmcrging applications have brought new 
chollcnges that foster il roncrved interest in statistical 
pattern recognition research. 
East, but not the least, the need for a principled, 
rather than ad hoc approach for succcssfully solving 
pattern recognition problems in a predictable way. 
For example, inany concepts in neural nclworks, 
which IWI’C inspired by binlogical iieu ral nctworks, 
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can be directly treated in r\ principled wr\y in 
statistical pat tern recognition. 

9.1 Frontiers of Pattern Recognition 
'I'able 1 1  summari7es several topics which, in mi- opinion, 
ale at thc frontiers of pattern rccognition. As wc can sce 
from Table 11, many fundamental research problems in 
slatistical patkrn recognilion rcrnain at thc lorclront cvcn 

as the field continues to grow. One such cxamplr?, model 
selection (which is an important issw in avoiding the curse 
of dimcnsionali ty), has bcen a topic of contintiecl research 
intcrcst. A common practice in model selection relies 011 

cross-validation (rotation incthhod), where the best model is 
selected based on the performance on thc validation sct. 
Since the validation set is not used in training, this method 
does not fully utilize the precious data f o r  training which is 
especially undesirable when the training daki set is small. 
To avoid this prnblem, rl number of model selection 
schemes [71] have becn proposed, including Baymian 
methods ['14], minimum description leiiggth (MDL) 11381, 
Akaike information criterion (AIC) 121 and margiiializcd 
likelihood [loll,  [159]. Various other regularization schemes 
which i n c o r p m k  prior kiwwlcdgc about model structure 
and parameters haw also bccn proposed. Structural risk 
minimization based on the notion of VC dimcnsion has alsr) 
bcen wed for model selection where the best model is the 
011c with thc bcst worst-cnsc pcrhjrmance (upper bound on 
the generalization errur) [162]. However, these methods do 
iiot rcducu khc complcxity of t l ic search for the best tnodel. 
Typically, the complexity incnsurc has to be cvduntcd for 
every possible model or in H set of prcsyccified models. 
Ccrtain assumptions (~ .g . ,  parameter independence) are 
often mndo in order to simplify the compkexity evaluation. 
Model selection based on stochns tic complcxity has bccn 
applied to feature selection jn both supervised learning and 
unsupervised lcariiing I lSU]  and pruning in  decision 

TABLE 11 
Frontiers of Pattern Recognition 
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trccs [ lnh ] .  In the lattcr caw, the best numbcr cif clusters is 
alsr, automatically detcrminud. 

Another example is mixture inodeling using EM algo- 
rithm (sc‘c Scction %2), which was proposed in 1977 [36],  
and which is now a very popular approach for density 
cstimation ancl clustcring [1591, clue to thc computing 
power available today. 

Over thc rcccnt years, ii numbcr o f  ncw concepts aiid 
t-cchniques have also bcm introduced. For i?xnmple, the 
maximum margin objcctive was introduccd in the context 
of support vector machines 1231 based on strtictural risk 
minimization tlwory 1162j. A clnssificr with a large margin 
separating two classes has a small VC dimension, which 
yields a gcid generalization performance. Many succcssful 
~ipplications of SVMs have demonstrated the superiority o f  
this objective. function over others [72]. It is found that the 
boosting algorithm [I431 also improves the margin dis- 
tribu tion. The maximum inargin objeclivr! can be consid- 
ered as a special rcgu1ai:ixed cost function, where the 
regularizcr is the inverse of the margin between tho two 
classes. Other ri.gularized cost functions, such as weight 
decay and weight climjnation, haw also been used in the 
context of neural networks. 

Due to klic introduction of SVMs, liiwar and qundmtic 
programming optimization techniques are once again b h i g  
oxteiisivcly studied for pattorn classification. Qundratic 
programming is credited frir lcading to the nice propcrty 
that tlie decision bnundary is fully specificd by boundary 
patterns, while linear programming with thc L‘ izorm or the 
invcrse of tlie margin yiolds R small set oE fcaturcs when the 
optimal solution i s  obtained. 

Thc topic of local dccisicm boundary learning has also 
received o lot of attention. Tts primary emphasis is on using 
patterris ticar the boundary of difkront classes to conslruct 
or modify thc dccision boundary. niic such an examplc is 
the boosting algorithm and its variatioi’l (Adalloost) tvhcrc 
misclassified patterns, mnstly mar the decision bmmdary, 
are subsampled with higlicr prohbilitics than correctly 
classified patterns to  fnrm a new training sat for trajning 
subsequent classifiers. Combination o f  local experts i s  also 
related to this cmccpt, since local experts can learn local 
decision boundaries more accurately than global methods. 
‘ln gcncral, classifier combinalicm could ref inc dccision 
boundary such that its variancc with respect to Baycs 
decision briuiidary is reduced, lcading to improved 
recognition accurwy [l58]. 

Scqucntial data arise in many real world problems, such 
as speech and on-line handwriting. Sequential pattcrn 
recognition has, thccoforc, become a very important topic 
in pattern recagnition. Hidden Markov Mndcls (HMM), 
have been a popular statistical tool for modeling arid 
recognizing seqiiential data, in particular., speech data 
[130], [MI. A large number of voriatinlls and enhancemmt~ 
of HMMs have been proposed in the literature [12], 
including hybrids of HMMs and neural networks, iilplit- 
output HMMs, weighted transducers, variable-dilration 
HMMs, Markov switching models, and switching statc- 
space models. 

Thc growth in  sensor tcchnrhogy and compuling 
powor has enriched the availability of data in sevcral 
ways. Real world nbjccts can now be rcyresented by 

inany mure iiieasurcments and satnpled at high ratcs. As 
physical objccb h a w  il finite complexity, these mcasmc- 
inents are gcncrnlly highly correlnted. This explains why 
models usirig spatial and spcctral corrclation in imagcs, 
or the Marknv structure in speech, or subspacc ap- 
proaches in general, liave become so important; tlwy 
compress the data to what is physically meaningful, 
thereby improving the classification acciiracy simulta- 
iieoti s1.y. 

Superviscd learning requires that every training sample 
be labeled with iks truc category. Collecting a largc amount 
of labeled data can sometimes be very expensivc. 111 
practice, we oftcn h a w  a small amount of 1abelc.d data 
and a larga amount of iinl~~beled data. ‘I-IOW to makc use of 
unlabeled data lor training a classifier is an important 
problem. SVM has bccn cxtcnded to perform scmisuper- 
vised learning [3.3]. 

hivariant  pattern rccognition is desirable in many 
applications, such as charnctcr and face recognition. Early 
research in statistical pattern recognition clid umphasize 
cxtraction of invariant h t u r c s  which tiiriis otit to bc n vcq( 
difficult task. Recently, thcru has been soiiie activity in 
designing invariant rccognition inetliods which do not 
require invariant fcaturcs. Examples are the noarest 
neigltbor classificr using tangent distance [ 1,421 a i d  
d.eforniable tcmplak matching [MI. These approachus D I ~  ly 
achievc invarinncc to small amounts of linear kransforma- 
tions and nodincar deformations. Besidcs, h e y  are 
computatirmally very intensive. Simard ct al. [153] pic>- 
posed an algoritlim named. Tangent-1’1-op to minimise the 
derivative of tlic classifiei, outputs with rcspcct to distortion 
parameters, j ,e,, to improve tlic iiivariance properly rif  the 
classifier to the selected distorlinii. ‘l’his makes the tixincd 
classificr comptitationally very cfficicnt. 

It is well-known that thc human recognition proccss 
relics hcavily on context, knowlcdge, and cxpcrience. ‘Tho 
cffectiveness of using contextual information in rcsolviiig 
anibigLlity and recognihg difficult patterns in thc major 
differentiator betwccii rccognition abilities of human beings 
aiid machincs. Contextual information has bccn success- 
fully uscd in spccch recognition, OCR, and reiiiotc sensing 
I.1731. It is commonly used as a puslproccssiizg step to 
corrccl: mistakes in the initial rrcognilion, but there is rl 

recent trend to bring contextual infcmnalicm in the earlier 
stages (e.g., word scgmcntation) of il recognition system 
[174]. Context informiition is often incorporatcd through the 
use of compound decision theory dcrivcd from I3aycs 
theory iir Markovian models [175]. Chic rcccnt, successful 
application is the hypcrkxt classifier t1.761 whcrc: the 
recognition of a hypertcxt documcnt (e.g., R web page) 
can be dramatically improved by j.ter.atively incorporiWng 
the category informatioi~ of other docutnents [hat point to o r  
are pointed by this doculncnt. 

9.2 Concluding Remarks 
Watanabe [‘164] wrote in the prefacp of the 1972 book he 
ed i ted , cn ti tlcd Fro I it i u s  ~ 7 f  Pnt l ern. Xccox 1 ii kiu H , tlw t ” Pat Lcrii 
recognition is il fast-moving and prolifcrating disciplino. I t  
is not easy krr forin a well-balanced aiid well-informcd 
summary view of thc ncwest developmmts i n  this field. I t  
is still harder to have a vision c ~ f  its future progress.” 
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[25] C. Carpincto and C;. Nomatlo, "A Litt irc Conceptual Clustcring 
System and tts Application to Browsing Kctrieoal," Muchiii? 
Lenviiirzg, vol. 24,110, 2, pp. 95-122, 1996. 
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