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Abstract—The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in
which pattern recognltion has been traditionally formulated, the statistical approach has been most intensively studied and used in
practice. More recently, neural network techniques and methods imported from statistical leaming theory have been receiving
increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes,
sensing environment, pattern representation, feature sxtraction and selection, cluster analysis, classifier design and learning, selection
of training and test samples, and parformance evaluation. In spite of almost 50 years of research and davelopment in this field, the
general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsoived. New and emerging
applications, such as data mining, web searching, retrievai of multimedia data, face recagnition, and cursive handwriting recognition,
require robust and efflclent pattern recognition technigues. The objective of this review paper is to summarize and compare some of
the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are

at the forefront of this exciting and challenging field.

Index Terms—Statistical pattern recagnition, classification, cluslering, fealure extraction, fealura selection, error estimation, classifier

combination, neural networks.

1 INTRODUCTION

B‘r the time they are five years old, most children can
recognize digits and letters. Small characters, large
characters, handwritten, machine printed, or rotated—all
are easily recognized by the young, The characters may be
written on a cluttered background, on crumpled paper or
may even be partially occluded. We take this abilily for
granted until we face the task of teaching a machine how to
do the same. Pattern recognition is the study of how
machines can observe the environment, learn to distinguish
patterns of interest from their background, and make sound
and reasonable decisions about the categories of the
patterns, In spite of almost 50 years of research, design of
a general purpose machine pattern recognizer remains an
elusive goal,

The best pattern recognizers in most instances are
humans, yet we do nat understand how humans recognize
patterns. Ross [140] emphasizes the work of Nobel Laureate
[Terbert Simon whose central finding was that pattern
recognition is critical in most human decision making tasks:
“The more relevant patterns at your disposal, the better
your decisions will be, This is hopeful news to propcnents
of artificial intelligence, since computers can surely be
taught to recognize patterns, Indeed, successful computer
programs that help banks score credit applicants, help
doctors diagnose disease and help pilots land airplanes
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depend in some way on pattern recognition... We need to
pay much more oxplicit attention fo teaching pattern
recognition.” Qur goal here is to introduce pattern recogni-
tion as the best possible way of utilizing available sensors,
processors, and domain knowledge to make decisions
automatically.

1.1 What is Pattern Recognition?

Automatic (machine} recognition, description, classifica-
tion, and grouping of patterns are important problems in a
variety of engineering and scientific disciplines such as
biology, psychology, medicine, marketing, computer vision,
artificial intellipence, and remote sensing. But what is a
pattern? Watanabe [163] defines a pattern “as oppuosite of a
chaos; it is an entity, vaguely defined, that could be given a
name.” For example, a pattern could be a fingerprint image,
a handwritten cursive word, a human face, ar a speech
signal. Given a pattern, its recognition/classification may
cousist of one of the following two tasks [163]: 1) supervised
classification (e.g., discriminant analysis) in which the input
pattern is identified as a member of a predefined class,
2) unsupervised classification {e.g., clustering) in which the
pattern is assigned to a hitherto unknown class. Note that
the recognition problem here is being posed as a classifica-
tion or categorization task, where the classes are either
defined by the system designer (in supervised classifica-
tion) or are learned based on the similarity of patterns (in
unsupervised classification).

Interest in the area of patlern recognition has been
renewed recontly due ko emerging applications which are
not only challenging but also computationally more
demanding (see Table 1}. These applications include data
mining (identifying a “pattern” e.g., correlation, cr an
outlier in millions of multidimensicnal patterns), document
classification (efficiently searching text documents), finan-
cial forecasting, organization and retrieval of multimedia
databascs, and biometrics {personal identification based on
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TABLE 1
Examples of Pattern Recognition Applications

Problen Domain Application

Tnput Pattern Dattern Classes

Rioinformatics Sequence analysis

[NA/Protein sequence  Known types of gones/

pattorns

Searching for
meaningful patterns

Data mining

Compact and well-
separated cluslars

Polats in nmlti-
dimensional space

Document Internet search

classification

Semantic categories
i {e.g., business, sports,
i ote)

Text document

Reading machine for
the blind

Document mage
analysis

Document intage | Alphamnmeric
chavactors, words

Printed cirenit board
inspection

Indnstrial antomation

| Dofeetive [ non-defective
natee of product

Intensity or rmigﬁ
imuge

Multimedia database Internet search

retrioval

Video clip Vidoo genves (0.g.,

action, dialogue, cte.)

Riomeatrie recoguition

Personal identification

Authorized users for
access control

Face, iris,
fingerpnint

Remote sensing Forceasting crop yield

Multispeciral image Land use categories,

growth pattern of crops

Telephone directory
chguiry without
operalor assistance

Speach rocognition

Specch waveform Spakan words

various physical attributes such as face and fingerprints).
Picard [125] has identified a novel application of pattern
recognition, called affective computing which will give a
computer the ability to recognize and cxpress emotions, to
respond intelligently to human emotion, and to employ
mechanisms of emetion that contribute to rational decision
making. A common characteristic of a number of these
applications is fhat the available features (typically, in the
thousands) are not usually suggested by domain experts,
but must be extracted and optimized by data-driven
procedures,

The rapidly growing and available computing power,
white enabling faster processing of huge data scts, has also
facilitated the use of elaborate and diverse methods for data
analysis and classification. At the same time, demands on
automatic pattern recognition systems are rising enor-
mously due to the availability of large databases and
stringent performance requirements (speed, accuracy, and
cost). In many of the emerging applications, it is clear that
no single approach for classification is “optimal” and that
multiple methods and approaches have to be used.
Conscquently, combining several sensing modalitics and
classifiers is now a commonly used practice in pattern
recognition,

The design of a pattern recognition system cssentially
involves the following three aspects: 1) data acquisition and
preprocessing, 2) data representation, and 3) decision
making. The problem domain dictates the choice of
sensor(s), preprocessing technique, representation scheme,
and the decision making model. Tt is generally agreed that a

well-defined and sufficiently constrained recognition pro-
blem (small intraclass variations and large interclass
varialions) will lead to a compact pattern representation
and a simple decision making strategy. Learning from a set
of examples (training set) is an important and desired
attribute of most pattern recognition systems. The four best
known approaches for pattern recognition are: 1) template
matching, 2) statistical classification, 3) syntactic or siruc-
tural matching, and 4) neural networks. These modals are
not necessarily independent and sometimes the samc
pattern recognition method exists with different interpreta-
tions. Attempts have been made to design hybrid systems
involving multiple models [57]. A Inief description and
comparison of these approaches is given below and
summarized in Table 2.

1.2 Templaie Matching

One of the simplest and carliest approaches to pattern
recognition is based on template matching, Matching is a
generic operation in patfern recognition which is used to
determine the similarity between two entities {points,
curves, or shapes) of the same type. In template maiching,
a template (typically, a 2P shape) or a prototype of the
pattern to be recognized is available. The patlern to be
recognized is matched against the stored template while
taking into account all allowable posc {translation and
rotation) and scale changes. The similarity measure, often a
correlation, may be optimized based on the available
training sct. Often, the template itself is learned from the
training sct. Template matching is computationally de-
manding, but the availability of faster processors has now
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TABLE 2
Pattern Recognition Models

Approach Represeniation

Recognition Innction Typical Critevion

Template malehing Samiples, pixels, curves

Correlation, distance meastve | Classification ervor

Statigtical Foutures

Diseriminant function Clasgification aror

Syntactic or structural DPrirmitives

Rules, grammar Aecoptanee orrar

Neural networks Sumples, pixels, features

Notwork funcrion Maoan square errar

made this approach more feasible. The rigid template
matching mentioned aboye, while effective in some
application domains, has a number of disadvantages. For
instance, it would fail if the patterns are distorted duc to the
imaging process, viewpoint change, or large intraclass
variations among the patterns, Deformable template models
[69] or rubber sheet deformations [9] can be used to match
patterns when the defermation cannot be easily explained
or modeled direetly,

1.3 Statistical Approach

In the stalistical approach, each pattern is represented in
terms of « fealurcs or measurements and is viewed as a
point in a d-dimensional space. The goal is to choose those
features that allow pattern vectors belonging to different
categories fto occlipy compact and disjoint regions in a
d-dimensional feature space. The ceffectiveness of the
reprosentation space (feature set) is determined by how
well patterns from different classes can be separated, Given
a set of training patterns from cach class, the objective is o
cstablish decision boundaries in the feature space which
separate patterns belonging to different classes. In the
slatistical decision theoretic approach, the decision bound-
aries are determined by the probability distribulions of the
patterns belonging to each class, which must cither be
specified or learned [41], [44)].

One can also take a discriminant analysis-based ap-
proach to classification: First a paramoiric form of the
decision boundary (e.g., linear or quadratic) is specified;
then the “best” decision boundary of the specified form is
found based on the classification of training patterns. Such
boundarics can be constructed using, for example, a mean
squared error criterion. The direct boundary construction
approaches are supported by Vapnik’s philosophy [162]: “If
you possess a restricted amount of information for solving
some problem, try to solve the problem directly and never
solve a more general problem as an intermediate step. Tt is
possible that the available information is sufficient for a
direct sobuticn but is insufficient for solving a more general
intermediate problem,”

1.4  Syntactic Approach

In many recognition preblems invelving complex patterns,
it is more appropriate to adopt a hierarchical porspective
where a pattern is viewed as being composed of simple
subpatterns which are themselves built from yet simpler
subpatterns [56], f121]. The simplest/elementary subpat-
terns to be recognized are called primitives and the given
complex pattein is represented in terms of the interrelation-
ships boetween these primitives, In syntactic pattern recog-
nition, a formal analogy is drawn between the structure of
patterns and the syntax of a language. The patterns are
viewed as sentences belonging to a language, primitives are
viewed as the alphabet of the language, and the senfences
are generated according to a grammar, Thus, a large
collection of complex patterns can be described by a small
number of primitives and grammatical rules. The grammar
for each pattern class must be inferred from the available
training samples.

Structural pattern recognition is intuitively appealing
because, in addition to classification, this approach also
provides a description of how the given pattern is
constructed from the primitives. This paradigm has been
used in situations where the patterns have a definite
structure which can be captured in terms of a set of rules,
such as EKG waveforms, textured images, and shape
analysis of contours [56]. The Limplementation of a syntactic
approach, howover, leads to many difficultics which
primarily have to do with the segmentation of noisy
patterns (to detect the primitives) and the inference of the
grammar from training data. Fu [56] introduced the notion
af atiributed grammars which unifies syntactic and statis-
tical pattern recognition. The syntactic approach may yield
a combinatorial explosion of possibilities to be investigated,
demanding large training sets and very large computational
efforts [122].

1.5 Neural Networks

Neural networks can be viewed as massively parallel
compuling systems consisting of an extremcly large
number of simple processors with many interconnections.
Neural network models aflempl Ly use some organiza-
lional principles (such as learning, generalization, adap-
tvity, fault tolerance and distributed representation, and
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computation) in a network of weighlted dirccted graphs
in which the nodes arc artificial neurons and directed
edges {with weights) are connections between neuron
outputs and ncuron inputs. The main characteristics of
neural networks are that they have the ability to learn
complex nonlinear input-output relationships, use se-
quential training procedures, and adapt themselves to
the data.

The most commonly used family of neural networks for
pattern classification tasks [83] is tho feed-forward network,
which includes multilayer perceptron and Radial-Basis
Function (RBF) nelworks. These networks are organized
into layers and have unidirectional connections belween the
layors. Anothor popular network is the Self-Organizing
Map {SOM}, or Kchonen-Network [92], which is mainly
used for data clustering and feature mapping. The learning
process involves updating network archilecture and con-
nection weights so that a network can efficiently perform a
specific classification/clustering task, The increasing popu-
Tarity of neural network models to solve pattern recognition
problems has been primarily due to their seemingly low
dependence on domain-specific knowledge (relative lo
model-based and rule-based approaches) and due to the
availability of efficient learning algorithms for practitioners
to use.

Neural networks provide a new suite of nonlinear
algorithms for [eature oxtraction (using hidden layers)
and classification (e.g., multilayer perceptrons). In addition,
exisling fealure extraction and classification algorithms can
also be mapped onr neural network architectures for
efficient (hardware) implementalion. In spite of the see-
mingly different underlying principles, most of the well-
known neural network models are implicitly equivalent or
similar to classical statistical pattern recognition methods
{sce Table 3). Ripley [136] and Anderson et al. [5] also
discuss this relationship between neural networks and
statistical pattern recognition, Andetrson et al, point out that
“neural networks are statistics for amatears.., Most NNs
conceal the statistics from the user.” Despite these simila-
ritics, neural networks do offer several advantages such as,
unified approaches for feature extraction and classification
and flexible procedures for finding good, moderately
nonlinear sclutions,

1.6 Scope and Organization

In the remainder of this paper we will primarily review
statistical methods for pattern representation and classifica-
tion, emphasizing recent developments. Whenever appro-
priate, we will also discuss closely related algorithms from
the neural networks literature. We omit the whole body of
literature on fuzzy classification and fuzsy clustering which
are in our opinion beyond the scope of this paper.
Interested readers can refer to the well-written books on
fuzzy pattern recognition by Bezdek [15] and [16f, In most
of the sections, the various approaches and methods are
summarized in tables as an easy and quick reference for the
reader. Due to space constraints, we are not able to provide
many details and we have to omit some of the approaches
and the associated references. Qur goal is lo emphasize
those approaches which have been extensively evalualed

and demonstrated o be useful in praclical applicaltions,
along with the new trends and ideas. '

The literature on pattern recognition is vast and
scattered in numerous journals in several disciplines
(c.g., applied slatistics, machine learning, neural net-
worls, and signal and image processing). A quick scan of
the table of contents of all the issues of the IFEE
Transactions on Pattern Analysis and Machine Infelligence,
since its first publicalion in January 1979, reveals that
approximately 350 papers deal with pattern recognition.
Approximately 300 of these papers covered the statistical
approach and can be broadly categorized into the
following subtopics: curse of dimensionality (15), dimen-
sionality reduction (50}, classifier design (175), classifier
combination (10), crror estimation (25) and unsupervised
classification (50). In addition to the excellent textbooks
by Duda and Hart [44]," Fukunaga [58], Devijver and
Kittler [39], Devroye et al. [41], Bishop [18], Ripley [137],
Schurmann [147], and McLachlan [105], we should also
point out two excellent survey papers written by Nagy
[111] in 1968 and by Kanal [89] in 1974. Nagy described
the early roots of pattern recognition, which at that time
was shared with researchers in artificial intelligence and
purception. A large part of Nagy's paper introduced a
number of potential applications of pattern recognition
and the interplay between feature definiion and the
application domain knowledge. lle also emphasized the
linear classificalion methods; nonlinear techniques were
based on polynomial discriminant functions as well as ¢n
potential funclions (similar to what are now called the
kernel functions). By the time Kanal wrote his survey
paper, more than 500 papers and aboul half a dozen
books on pattern recognition wore already published,
Kanal placed less emphasis on applications, but more on
modeling and design of pattern recognition systems. The
discussion on automatic feature extracton in [89] was
based on various distance measures between class-
conditional prebability density functions and the result-
ing ervor bounds. Kanal's review also contained a large
section on structural methods and pattecn grammars.

In comparison to the state of the pattern recognition field
as described by Nagy and Kanal in the 1960s and 1970s,
today a number of commercial pattern recognition systems
are available which even individuals can buy for personal
use (e.g., machine printed character recognition and
isolated spoken word recognition). This has been made
pussible by various technological developments resulting in
the availability of inexpensive sensors and powerful desk-
top computers. The field of pattern recognition has become
so large that in this review we had to skip detailed
descriptions of various applications, as well as almost all
the procedures which model domain-specific knowledge
(e.g., structural pattern recognition, and rule-based sys-
tems). The starting point of our review (Section 2) is the
basic elements of statistical methods for pattern recognition.
[t should be apparent that a feature veclor is a representa-
tion of reail world objects; the choice of the representation
strongly influences the classification resuits,

1. Its second edition by Duada, Hart, oo Stork [45] §s in press,
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TABLE 3
Links Between Statistical and Neural Network Methods

© Statisrical Pattern Recognition |

Artificial Neural Networks

Lincar Disciminant Tunction

C Pereeptron

Principal Component Analysis

Auto-Associative Network, and various PCA networks

A Posleriori Probability Estimation
Nonlinear Discriminant. Analysis
Parcen Window Densiiy-hased Classifior

_ Radia

) L\"].l_,llti].-';.j-’cr ‘Porce ptron
CAMunliikayer Pereoptron
| Basls lunction Network

Fulited I-NN t{n]c

| Kohonen S ING

The topic of probabilistic distance measures i5 cun-
rently not as important as 20 ycars ago, since it is very
difficult to estimate density functions in high dimensional
feature spaces. Instead, the complexity of classilication
procedures and the resulting accuracy have gained a
large interest. The curse of dimensionality (Section 3) as
well as the danger of overfraining are some of the
consequences of a complex classifier. Tt is now under-
stood that these problems can, to some extent, be
circumvented using regularization, or can even be
completely resolved by a proper design of classification
precedures. The study of support vector machines
(5¥Ms), discussed in Section 5, has largely contributed
to this understanding. In many real world problems,
patterns are scattered in high-dimensional (often) wnon-
linear subspaces. As a consequence, nonlincar procedures
and subspace approaches have become popular, both for
dimensionality reduction (Section 4} and for building
classifiers (Section 5). Neural networks offer powerful
tools for these purposes. 1t is now widely accepted that
no single procedure will completely solve a complex
classification problem. There are many admissible ap-
proaches, each capable of discriminaling patterns in
certain portions of the feature space. The combination of
classificrs has, therefore, become a heavily studied topic
{(Section 6), Various approaches to estimaling the ervor
rale of a classifier are presented in Section 7. The topic of
unsupervised classification or clustering s covered in
Section 8. Finally, Section 9 identifies the frontiers of
pattern recognition.

It is our goal that most parls of the paper can be
appreciated by a newcomor to the field of pattern

test o

Preprocessing ———

pattern i

Classilication }
Training

training )
Preprocessing ——————mm-

pattern

T

recognilion. To this purpose, we have included a number
of examples to illustrate the performance of wvarious
algorithms. Nevertheless, we realize that, due to space
limitations, we have not been able to introduce all the
concepts completely. At these places, we have to rely on
the backgreund knowledge which may be available only
to the more experienced readers.

2 STATISTICAL PATTERN RECOGNITION

Statistical pattern recognition has been used succsssfully to
design a number of commercial recognition systems, In
statistical pattern rccognition, a pattern ig represented by a
set of d features, or attributes, viewed as a d-dimensional
feature vector. Well-known concepts from stalistical
decision theory are utilized to establish decision boundaries
between pattern classes. The recognition system is operated
in two modes: training (Jearning) and classification (tesling)
(see l'ig. 1). The role of the preprocessing module is to
segment the pattern of interest from the background,
remove noise, normalize the patfern, and any other
operation which will contribute in defining a compact
representation of the pattern. In the fraining mode, the
feature extraction/sclection module finds the appropriate
features for represenling the input patterns and the
clagsifier is trained o partition the feature space. The
feedback path allows a designer to optimize the preproces-
sing and feature extraction/selection strategics. In the
classification mode, the trained classifier assigns the input
pattern to one of the pattern classes under consideration
based on the measured features,

FFealore e
Measurcnenl ———m=  Classilication ————

Feature '
Extraction/ — g
Seclection

T

Lcarning

Fig. 1. Model for statistical pattern recognition.
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The decision making process in statistical pattern
recognition can be summarized as follows: A given pattern
is to be assigned to one of ¢ categories wy,wy,+,w, based
on a vector of d feature values £ = (ay, %9, -+, 24). The
features are assumed to have a probability density or mass
{dopending on whether the features are continuous or
discrete) function conditioned on the pattern class. Thus, a
pattern vector z belonging to class w; is viewed as an
observation drawn randomly from the class-conditional
probability function p{zfs). A number of well-known
decision rules, including the Bayes decision rule, the
maximum likelihood rule (which can be viewed as a
particular casc of the Bayes rule), and the Neyman-Pearson
rule are available to define the decision boundary. The
“optimal” Bayes decision rule for minimizing the risk
(expected value of the loss [unction) can be stated as
follows: Assign input pattern = to class w; for which the
conditionat risk

Riesla) = 3 Lion) - Pl 0)

is minimum, where J.{w;, ;) is the loss incurred in deciding
w; when the true class is w; and Pfwj|z) is the posterior
probability [44]. In the case of the 0/1 loss function, as
defined in (2), the conditional risk becomes the conditional
probability of misclassification,

B ={ 3 133 @)

For this choice of loss function, the Bayes decision rule can
be simplified as follows (also called the maximum a
posteriori (MAP) rule): Assign input pattern x to class w; if

Pw;|z) » Plwj|z) for all j # 4, (3)

Various strategies arc ulilized to design a classifier in
statistical pattern recognition, depending on the kind of
information available about the class-conditional densities.
If all of the class-conditional densities are completely
specified, then the optimal Bayes decision rule can be
used to design a classifier. However, the class-conditional
densities are usually not known in practice and must be
learned from the available training patterns. If the form of
the class-conditional densities is known (e.g., multivariate
Gaussian}, but some of the parameters of the densitics
{e.g., mean vectors and covariance matrices) are un-
known, then we have a parametric decision problem. A
common strategy for this kind of problem is to replace
the unknown parameters in the density functions by their
estimated values, resulting in the so-called Bayes plug-in
classifier. The optimal Bayesian strategy in this situation
requires additional information in the form of a prior
distribution on the unknown parameters, If the form of
the class-conditional densities is not known, then we
operate in & nonparametric modo. In this case, we must
either estimate the density function (e.g., Parzen window
approach) or directly construct the decision boundary
based on the training data (e.g., k-nearest neighbor rule).
In fact, the multilayer perceptron can also be viewed as a

supervised nonparametric method which consfructs a
decision boundary.

Another dichotomy in seatistical pattern recogpition is
that of supervised learning (labeled training samples)
versus unsupervised learning (unlabeled training sam-
ples). The label of a training pattern represents the
category to which that pattern belongs. In an unsuper-
vised learning problem, sometimes the number of classes
must be learned along with the structure of each class.
The various dichotomics that appear in statistical pattern
recognition are shown in the tree structure of Fig. 2. As
we traverse the tree from top to bottom and lefl to right,
less information is available to the system designer and as
a result, the difficully of classification problems increases.
In some sense, most of the approaches in stafistical
pattern recognition (leaf nodes in the tree of Lig. 2) are
attempting to implement the Bayes decision rule. The
field of cluster analysis cssentially deals with decision
making problems in the nonparametric and unsupervised
learning meode [81]. Further, in cluster analysis the
number of categories or clusters may nol cven be
specified; the task ig to discover a rcasomable categoriza-
tion of the data (if one exists). Clusler analysis algorithms
along with various techniques for visualizing and project-
ing multidimensional data are alse referred to as
exploratory data analysis methods,

Yet another dichotomy in statistical pallern recognition
can be based on whether the decision boundaries arc
obtained directly (geometric approach) or indirectly
{probabilistic density-based approach) as shown in Fig. 2.
The probabilistic approach requires to estimate density
functions first, and then construct the discriminant
functions which specity the decision boundaries. On the
other hand, the geometric approach often constructs the
decision boundaries directly from optimizing certain cost
functions. We should point out that under certain
assumptions on the density functions, the two approaches
are equivalent. We will see examples of each category in
Seclion 5.

No matter which classification or decision rule is used, it
must be trained using the available training samples. As a
resull, the performance of a classifier depends on both the
number of available training samples as well as the specific
values of the samples. At the same time, the goal of
designing a recognition system is lo classify futire test
samples which are likely to be different from the training
samples, Therefore, optimizing a classifier to maximize its
performance on the training set may not always result in the
desired performance on a test set. The generalization ability
of a classificr refers to its performance in classifying test
patterns which were not used during the lraining stage, A
poor generalization ability of a classifier can be attributed to
any one of the following factors: 1} the number of features is
too large relative to the number of training samples {curse
of dimensionality [80]), 2) the number of unknown
parameters associatod with the classifier is large
{e.g., polynomial classifiers or a large neural nctwork),
and 3) a classifier is too intensively optimized on the
training set {overtrained); this is analogous to the
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Fig. 2. Yarious approaches in statigtical pattern recognition.

phenomenon of overfitting in regression when there are tco
many free parameters.

Overtraining has been investigated theoretically for
classifiers that minimize the apparent crror rate {the error
on the training sct). The classical studies by Cover [33] and
Vapnik [162] on classifier capacity and complexity provide
a good understanding of the mechanisms behind
overtraining. Complex classifiers (e.g., those having many
independent parameters) may have a large capacity, ic.,
they are able to represent many dichotomies for a given
dataset, A frequently used measure for the capacity is the
Vapnik-Chervonenkis (VC} dimensionality [162]. These
results can also be used to prove some interesting propoer-
ties, for example, the consistency of certain classifiers (see,
Devroye et al. [40], [41]). The practical use of the results on
classifier complexity was initially limited because the
proposed bounds on the required number of (training)
samyples were too conservative, In the recent development
of support vector machines [162], however, these results
have proved to be quite uscful. The pitfalls of over-
adaptation of estimators to the given training set are
observed in several stages of a pattern recognition system,
such as dimensionality reduction, density estimation, and
classifier design. A sound solution is fo always use an
independent dataset {test set) for evaluation. In order to
avoid the necessity of having several independent test sets,
estimators are offen based on rotated subsets of the data,
preserving different parts of the data for optimization and
evaluation [166]. Fxampies arc the optimization of the
covariance ocstimates for the Parzen kernel [76] and

Geametric Approach

discriminant analysis [61], and the use of beotstrapping

for designing classifiers [48], and for errov estimation [82].
Throughout the paper, some of the classification meth-
ods will be illustrated by simple experiments on the
following three data sets:
Dataset 1: An artificial dataset consisting of two classcs
with bivariate Gaussian density with the following para-
meters:

Lo 0.8 0
W:@&W:QW&:hO%Fm%:“ J

The intrinsic overlap between these two densities is
12.5 percent,

Dataset 2: Tris dataset consists of 150 four-dimensional
patterns in three classes (50 patteins each): Iris Setosa, Iris
Versicolor, and [ris Virginica,

Dataset 3: The digit dataset consists of handwritten
numerals (“0”-“9"} cxtracted from a collection of Duich
utility maps. Two hundred patterns per class (for a totai of
2,000 patterns} are available in the form of 30 x 48 binary
images. These characters arve represented in terms of the
following six feature sets:

76 Fourier coefficients of the character shapes;
216 prefile correlations;

64 Karhunen-Loéve coefficients;

240 pixel averages in 2 x 3 windows;

47 Zernike moments;

6 morphological features.

e

o



JAIM ET AL STATISTICAL PATTERN RECOGNITION: A REVIEW

Details of this dataset are available in [160]. In our
experiments we always used the same subsct of 1,000
patterns for testing and various subscts of the remaining
1,000 patterns for training* Throughout this paper, when
we refer to “the digit dataset,” just the Karhunen-Loeve
features (in item 3) are meant, unless stated otherwise.

3 THE CURSE OF DIMENSIGNALITY AND PEAKING
PHENOMENA

The performance of a classifier depends on the interrela-
tionship belween sample sizes, numbor of features, and
classifier complexity. A naive table-lookup technique
{parlitioning the feature space into cells and associating a
class label with each cell} requires the number of training
data points to be an exponential function of the feature
dimension [18]. This phenomenon is termed as “curse of
dimensionality,” which leads to the “peaking phenomenon”
{sce discussion below} in classifier design. It is well-known
that the probability of misclassification of a decision rule
does not increase as the number of features increases, as
long as the class-conditional densities are completely
known (or, equivalently, the number of training samples
is arbitrarily large and representative of the underlying
densities). However, it has been often observed in practice
that the added features may actually degrade the perfor-
mance of a classificr if the number of training samples that
are used to design the classifier is small relative to the
number of features. This paradoxical behavior is referred to
as the peaking pl‘tenomenon3 [80], [131], [132]. A simple
explanation for this phenomenon is as follows: The most
commonly used parametric classifiers estimate the un-
known patameters and plug them in for the true parameters
in the class-conditional densities. For a fixed sample size, as
the number of features is increased (with a corresponding
increase in the number of unknown parameters), the
reliability of the parameter estimates decreases. Conse-
quently, the performance of the resulting plug-in classifiers,
for a fixed sample size, may degrade with an increase in the
number of features.

Trunk [157] pravided a simple example to illustrate the
curse of dimensionality which we reproduce below.
Consider the two-class classification problem with equal
prior probabilitics, and a d-dimensional multivariate Gaus-
sian distribution with the identity covariance matrix for
cach class. The mean vectors for the two classes have the
foilowing components

1 1 i
my = (].,7‘7,% - \/d) el
. 1 1 1
ﬂlz‘:('_l,__,__‘;\"',_' J)-
V2' V3 Vd

Note that the features are statistically independent and the
diseriminating power of the successive features decrcases
monotonically with the first feature providing the max-

2. The dataset is available through the University of California, Irvine
Machine Teaming Repository (wiww.ies.uci.edu/~mlearn/MLRepositor-
v.html)

3. I the rest of this paper, we do not nake distinclion belween the curse
of dimensionality and the peaking phenomenaon,

A

imum discrimination between the two classes. The only
parameter in the densities is the mean vector,
T = ] — - -TRa,

Trunk considered the following two cases:

I. The mean vector m is known. In this situation, we
can use the optimal Bayes decigion rule (with a 0/1
loss function) Lo construct the decision beundary.
The probability of error as a function of 4 can be
expressed as:

& 1 e
B.(d) ::.[\/ﬂ) \/—Q_ﬁ-c ¥ dz. (4)

It is easy to verily that limg.. Pu(d) = 0. In other
words, we can perfectly discriminate the two classes
by arbitrarily increasing the number of features, d.

2. The mean vector m is unknown and n labeled
training samples are available. Trunk found the
maximum likelihood estimate # of m and used the
plug-in decision rule (substitute w1 for m in the
optimal Bayes decision rule). Now the probability of
error which is a function of both n and d can be
written as:

Ea L
B.n, d)— — e ¥ dz, where (5}
) VAT

o 1
S(d) — i:J(f) . {G)
L+H> i +8

Trunk showed that limg .o Fi(n, d) =1, which implies
that the probability of error approaches the maximum
possible valuc of 0.5 for this two-class problem. This
demonstrates that, unlike case 1} we cannot arbitrarily
increase the number of features when the parameters of
class-conditional densitics are cstimated from a finite
number of training samples, The practical implication of
the curse of dimensionality is that a system designer should
try to select only a small number of salient features when
confronted with a limited training set.

All of the commonly used classifiers, including mulhi-
layer feed-forward networks, can suffer from the curse of
dimensionality. While an exact relationship between the
probability of misclassification, the number of training
samples, the number of features and the true parameters of
the class-conditional densities is vory difficull to establish,
some guidelines have been suggested regarding the ratio of
the sample size to dimensionality. It is gencrally accepted
that using at least ten times as many training samples per
class as the number of features (n/d > 10) is a good practice
to follow in classifier design |80]. The more complex the
classifier, the larger should the ratio of sample size to
dimensionalily be to avoid the curse of dimensionality.

4 DIMENSIONALITY REDUCTION

There are two main reasons to keep the dimensionality of
the pattern representation (ic., the number of features} as
small as possible: measurement cost and classification
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aceuracy. A limited yet salient feature sct simplifies both the
pattern representalion and the classifiers that are built on
the selected represemtation. Consequently, the resulting
classifier will be faster and will use less memery. Moreover,
as staled carlier, a small number of features can alleviate the
curse of dimensionality when the number of training
samples is limited. On the other hand, a reduction in the
number of fratures may lead to a loss in the discrimination
power and thereby lower the accuracy of the resulling
recognition system. Watanabe's ugly duckling theorem [163]
also supports the need for a careful choice of the features,
sitce it is possible to make two arbitrary patterns similar by
cncoding them with a sufficiently large number of
redundant features.

It is important to make a distinction between feature
selection and feature extraction, The form feature selection
refers to algorithms that select the (hopefully) best subsaet of
the input feature sef. Methods that create new features
based on transformations or combinations of the original
feature set are called feature extraction algorithms. How-
ever, the terms feature selection and feature extraction are
used interchangeably in the literature, Note that often
feature extraction precedes featie selection; first, features
are extracted from the sensed data {(e.g., using principal
component or diseriminant analysis) and then some of the
extracted features with low discrimination ability are
discarded. The choice between feature selection and feature
extraction depends on the application domain and the
specific fraining data which is available. Feature selection
leads to savings in measurement cost (since some of the
features are discarded) and the selected features retain their
original physical interpretation. In addition, the retained
features may be important for understanding the physical
process that generates the patterns. On the other hand,
transformed features generated by featne extraction may
provide a better discriminative ability than the best subsct
of given features, but these new features (a linear or a
nonlinear combination of given features) may not have a
clear physical meaning,

In many situations, it is useful to obtain a two- or three-
dimensional projection of the given multivariate data (n x d
pattern matrix) to permil a visual examination of the data,
Several graphical techniques also cxist for visually obser-
ving multivariate data, in which the objective is to exactly
depict each pattern as a picture with d degrees of freedom,
where d is the given number of features. For example,
Chernoff [29] represenls cach pattern as a cartoon face
whose facial characteristics, such as nose length, mouth
curvature, and cye size, are made to correspond to
individual fealures. Fig. 3 shows three faces corresponding
to the mean vectors of [ris Setosa, Iris Versicolor, and Iris
Virginica classes in the Tris data (150 four-dimensional
palterns; 50 patterns per class), Note that the face associated
with Tris Setosa looks quite different from the other two
faces which implies that the Setosa category can be well
separated from the remaining lwo categories in the four-
dimensional feature space {This is also evident in the two-
dimensional plots of this data in Fig. 5).

The main issue in dimensionality reduction is the choice
of a criterion function. A commonly used criterion is the
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classification error of a feature subset. But the classification
error itself cannot be reliably estimated when the ratic of
sample size to the number of features is small. In addition to
the choice of a criterion functon, we also need to determine
the appropriate cdimensiomality of the reduced feature
space. The answer to this question is embedded in the
notion of the intrinsic dimensionality of data. Intrinsic
dimensionality essentially determines whether the given
d-dimensiomal patterns can be described adequately in a
subspace of dimensionality less than d TFor example,
d-dimensiconal patterns along a reascnably smooth curve
have an intrinsic dimensionality of one, irrespective of the
value of d. Note that the intrinsic dimensionality is not the
same as the lincar dimensionality which is a global property
of the data involving the number of significant eigenvalues
of the covariance matrix of the data. While several
algorithms are available to estimate the intrinsic dimension-
ality [81], they do not indicate how a subspace of the
identified dimensionality can be easily identificd.

We now briefly discuss some of the commonly used
methods for feature extraction and feature selection.

4.1 Feature Extraction

Feature extraction methods determine an appropriate sub-
space of dimensionality m (either in a lincar or a nonlinear
way) in the original feature space of dimensionality o
{m < d}. Lincar transforms, such as principal component
analysis, factor analysis, lincar discriminant analysis, and
projection pursuit have been widely used in pattern
recognition for feature extraction and dimensionality
reduction. The best known linear feature extractor is the
principal compenent analysis {PCA) or Karhunen-Lodve
expansion, that computes the m largest eigenvectors of the
d x d covariance matrix of the n d-dimensional patterns, The
lirear transformation is defined as

Y — XII, (7)

where X is the given n x d pattorn matrix, ¥ is the derived
n x  pattern matrix, and I is the 4 x m matrix of lincar
transformation whose columns are the eigenvectors. Since
PCA uses the most expressive features (cigenvectors with
the largest eigenvalues), it effectively approximates the data
by a linear subspace using the mean squared error criterion,
Other methods, like projection pursuit [53] and
independent component analysis (ICA) [31], [11], [24], [96]
are more appropriate for non-Gaussian distributions since
they do not rely on the second-order property of the data,
ICA has been successfully used for blind-source separation
[78]; extracting linear feature combinations that definc
independent sources. This demixing is possible if at most
one of the sources has a Gaussian distribution.

Whereas PCA is an unsupervised lincar feature extrac-
tion methed, discriminant analysis uses the category
information associated with each pattern for (linearly)
extracting the most diseriminatory features. In discriminant
analysis, interclass separation is emphasized by replacing
the total covariance malrix in PCA by a gencral separability
measure like the Fisher criterion, which resulls in finding
the cigenveetors of 515, (the product of the inverse of the
wilhin-class scatter matix, 5., and the between-class
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Fig. 3. Chernoft Faces corresponding to the mean vectors of Iris Setoss, lris Versicolor, and Iris Virginica.

scatter matrix, 5;) [58]. Another supervised criterion for
non-Gaussian class-condifional densities is based on the
Palrick-Fisher distance using Parzen density estimates [41],

There are scveral ways to define nonlinear featurc
extraction techniques. One such method which is directly
related to PCA is called the Kernel PCA [73], [145]. The
basic idea of kernel PCA is to first map input data into some
new featurc space F' typically via a nonlinear funclion &
(c.g., pelynomial of degree p) and then perform a linear
PCA in the mapped space. However, the * space often has
a very high dimension. To avoid computing the mapping @
explicitly, kernel PCA employs only Mercer kernels which
can be decomposed into a dot product,

K{r,y) = @z} O(y).

As a result, the kemnel space has a well-defined melric.
Examples of Mercer kernels include pth-order polynomial
{z — )’ and Gaussian kernel

e owi®
g 13 N

Lot X be the normalized » x d pattern matrix with zero
mean, and ®(X) be the pattern matrix in the # space.
The lincar PCA in the I space solves the eigenvectors of the
correlation matrix (X )}B(X)", which is also called the
kernel matrix K{X, X}. In kernel PCA, the first m
eigenvectors of K{X, X) are obtained to define a transfor-
mation matrix, £. (I has size n x m, where m represents the
desired number of features, m = o). New patterns = are
mapped by K(x, X}£, which are now represented relative
to the training sct and not by their measured feature values.
Note that for a complele representation, up to m eigenvec-
tors in 12 may be needed {depending on the kernel function)
by kernel PCA, while in lincar PCA a set of d eigenvectors
represents the original fealurc space. IMow the kernel
function should be chosen for a given application is still
an open issue.

Multidimensional scaling (MDS) is anolher nonlinear
feature extraction lechnique. It aims to represent a multi-
dimensional dataset in two or three dimensions such that
the distance mairix in the original J-dimensional feature
space Is preserved as faithfully as possible in the projected
gpace. Various streas functions are used for measuring the
performance of this mapping [20]; the most popular

critorion is the stress funclion introduced by Sammon
[141] and Nicmann [114]. A problem with MDS is that it
does not give an explicit mapping function, so it 1s not
possible to place a new pattern in a map which has been
computed for a given training sct without repeating the
mapping. Scveral techniques have been investigated to
address this deficiency which range from lincar interpola-
tion to training a neural network [38]. It is also possible to
redefine the MDS algorithm so that it directly produces a
map that may be used for new test patterns [165],

A feed-forward neural network offers an integrated
procedure for feature extraction and classification; the
output of each hidden layer may be interpreted as a sct of
new, often nonlinear, features presented to the oatput layer
for classification. In this sense, multilayer natworks serve ag
feature extractors [100]. Tor example, the networks used by
Fukushima [62] ¢t al. and Le Cun et al, [95] have the so
called shared weight layers that are in fact filters for
extracting features in two-dimensional images. During
training, the filters are tuned to the data, so as to maximize
the classification performance.

Neural networks can also be used directly for feature
exfraction in an unsupervised mode. Fig. 4a shows the
architecture of a network which is able to find the PCA
subspace [117]. Instead of sigmoids, the neurons have linear
transfer functions. This network has d inputs and o culputs,
where ¢ is the given number of features. The inputs are also
used as targets, forcing the output layer to reconstruct the
input space using enly one hidden layer. The three nodes in
the hidden layer capture the first three principal compo-
nents [18]. If two nonlinear layers with sigmoidal hidden
units arc also included (see Yig. 4b), then a nonlincar
subspace is found in the middle layer (also called the
battlencck layer). The nonlincarily is limited by the size of
these additional layers, These so-called antoassociative, or
nonlinear PCA nebworks offer a powerful ool to train and
deseribe nonlinear subspaces [98]. Ofa [118] shows how
autoassociative netwaorks can be used for TCA.

The Seift-Organizing Map (SOM), or Kohonen Map [92],
can also be used for nonlinear feature extraction. In SOM,
neurons are arranged in an m-dimensional grid, where  is
usually 1, 2, or 3. Bach neuron is cormected to all the d input
units. The weights on the connections for each neuron form
a d-dimensional weight vector. During training, patterns are
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Fig. 4. Autoassociative networks for finding a three-dimensional subspace. (a) Lincar and (b} nonlinear {not all the connections are shown).

presenied o the network in a random order. At each
presentation, the winrer whose weight vector is the closest
to the input vector is first identified. Then, all the neurons in
the neighborhood (defined on the grid) of the winner are
updated such that their weight vectors move towards the
input vector. Consequently, after training is done, the
weight vectors of neighboring neurons in the grid are likely
to represent input patterns which are close in the original
feature space. Thus, a “topology-preserving” map is
formed. When the grid is plotted in the original space, the
grid connections are more or less stressed according to the
density of the training data. Thus, S0OM offers an
m-dimensional map with a spatial connectivity, which can
be interpreted as feature extraction. SOM is different from
learning vector quantization (LV(Q)) because no neighbor-
hood is delined in LVQ.

Table 4 summarizes the feature extraction and projection
methods discussed abcove, Note that the adjective nonlinear
may be used both for the mapping (being a nonlinear
function of the original features) as well as for the criterion
function {for non-Gaussian data). Fig. 5 shows an example
of four different two-dimensional projections of the four-
dimensional Iris datasel. Tig, 5a and Fig. 5b show Lwo lincar
mappings, while Fig, 5¢ and Fig. 5d depict two nonlinear
mappings. Only the Fisher mapping (Fig. 5b) makes use of
the category information, this being the main reason why
this mapping exhibils the best separation between the three
categories,

4.2 Feature Selection

The problem of feature selection is defined as follows: given
a set of d features, select a subset of size m that leads to the
smallest classification error. There has been a resurgence of
interest in applying feature selection methods due to the
large number of fealures encountered in the following
situations: 1) multisensor fusion: features, computed from

different sensor modalities, are concatenated to form a
feature vector with a large number of components;
2) integration of multiple data models: senser data can be
modeled using different approaches, where the model
parameters serve as features, and the parameters from
different models can be pooled to yicld a high-dimensional
feature vector.

Let ¥ be the given set of features, with cardinality ¢ and
fet m represent the desired number of features in the
selected subset X, X C Y. Let the feature sclection criterion
function for the set X be represented by J(X) Let us
assume that a higher value of J indicates a better feature
subset; a natural choiee for the critorion function is
J = (1-- £), where F. denotes the classification error, The
use of %, in the criterion function makes feature selection
procedures dependent on the specitic classifier that is used
and the sizes of the training and test sets, The most
straightforward approach to the feature selection problem
would require 1) examining all (:fr) possible subsets of size
m, and 2} selecting the subset with the largest value of J(-).
However, the number of possible subsets grows combina-
torially, making this exhaustive scarch impractical for even
moderate values of wn and . Cover and Van Campenhout
[35] showed that no nonexhaustive sequential feature
selection procedure can be guaranteed to produce the
optimal subset. They further showed fhat any ordering of
the classification errors of each of the 2¢ feature subsets is
possible. Therefore, in order to guarantee the optimality of,
say, a 12-dimensional feature subset out of 24 available
features, approximately 2.7 million possible subscis must be
evaluated. The only “optimal” (in terms of a class of
moenotonic criterion functions) feature selection method
which avoids the exhaustive search is based on the branch
and bound algorithm. This procedure avoids an exhaustive
gearch by using intermediate results for obtaining bounds
on the final criterion value. The key to this algorithm is the
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Fig. 5. Two-dimensional mappings of the Iris dataset {+: Iris Setosa; ™: Iris Versicolor; 0! is Virginica). (&) PGA, (b} Fisher Mapping, (¢) Sammon

Mapping, and {d) Karnel PCA with second order polynomial kernal.

monotonicity property of the criterion function J{-); given
two features subsets X, and X, if X; C X5, then
J(X|) < J(X). In other words, the performance of a
feature subset sheuld improve whenever a feature is added
to it. Most commonly used criterion functions do not satisty
this monotonicity property.

It has becn argued that since feature selection is typically
done in an off-line manner, the execution time of a
particular algorithm is not as critical as the optimality of
the feature subset it generates. While this is true for featute
sets of maderale size, several recent applications, particu-
larly those in data mining and document classification,
involve thousands of features. In such cases, the computa-
tional vequirement of a feahure selection algorithm is
extremely important. As the number of feature subset
evaluations may easily become prohibitive for large feature
sizes, a number of suboptimal seleclion techniques have
been proposed which essentially tradeoff the optimality of
the selected subset for computational efficiency.

Table 5 lists most of the well-known featurc selection
methods which have been proposed in the literature [85].
Only the first two methads in this table gharantee an
optimal subsct. All other strategies are suboptimal due to

the fact that the best pair of featurcs need not contain the
best single feature [34]. In general: good, larger fealure sets
do not necessarily include the good, small sets, As a resudt,
the simple method of selecting just the best individual
features may fail dramatically. It might still be uscful,
however, as a first step to select some individually good
features in decreasing very large feature sets (e.g., hundreds
of features). Further selection has to be donc by more
advanced methods that take fealure dependencies into
account. These operale either by evaluating growing fealurc
sets (forward selection} or by evaluating shrinking featurc
gsets (backward selection). A simple sequential method like
SFS (SHS) adds (dcletes) one feature at a time. More
sophisticated techniques are the “Plus 1 - take away r”
strategy and the Sequential Floating Search methods, SFES
and SBFS [126]. These methods backtrack as long as they
find improvements compared to provious feature sets of the
same size. In almost any large feature selaciion problem,
these methods perform better than the straight sequential
searches, SFS and SBS. SFFS and SDFS methods find
“nested” sets of features that remain hidden otherwise,
but the number of feature set evaluations, howcever, may
easily increase by a factor of 2 to 10.
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TABLE 4
Feature Extraction and Projection Methods

[Method

Troperty

Cominenls

Trincipal Componont
Analysis (PCA)

Linoar map; fast;
elgonvector-baged,

Teaditional, cipenvector basoed method, also knowi
a3 Karhunen-Tatve expansion; gaod lor Ganssian
daga,

Linear Discriminant
Analyels

Supervised linear map,
fast; eigenvector-hased.

Better than PCA for classilication; imited Lo {¢ — 1)
cotnponentd with non-zevo cigonvabines,

'rojection Tursuit

Timear map; iterative;
non-Gaussian.

Mainly used for Interactive exploratory data
analysis.

Tndependent Component.
Analysis (TICA)

Kernel PCA

‘Lincar map, iterative,
non-Gaussian.

Blind source reparation, used lor de-mixing
nen-Glanssian distributed somrees (features).

Ni;IIHIIEZHI' [II}\]);
vlgenvector-hased,

I'CA-hased method, using 4 kernel to replace inner
procnets of pablern veclors,

PCA Network

Linear map; iterative,

Auto-associative noural network with Hnear transfer

fiunettons and just one hidden layer.

Noulintar FCA

Tinear niap; nan-Ganssian

eriterion; usually lterative

“Neural network approach, possibly used for TOA

MNonlinear auti-
agsociative network

Nonlinoar mapy; mons-Galis-
slan criterion; ierative.

Bottlenaek networle with soveral hidden Tyors; the
emlinear map is optimized by & nonlinear
reconstruction; uput is nserl as tagee.

Multidimensional
sealing (MDS), and
Samunon’s projection

Sel-Orpanizing Map

(SOM)

Nonliuear map; iterative.

Often panr generalization; sanploe
limiteed; nofse scnaitive; mainly wsed for
2-dimensional visnalisation.

“Nonfinear; iterative.

[n addition to the search strategy, the user needs to select

an appropriate evaluation criterion, J{-} and specify the
value of . Most feature selection methods use the

classification error of a feature subset to evaluate its
effectiveness. This could be done, for example, by a &-NN

Tased on a gid of noncons i ehe feainre space;
siltable for extracting spaces of low dimensionality.
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classificr using the leave-one-out method of error estima-
tion. Howoevwver, use of a different classifier and a differont

method for estimating the error rate could lead o a
different feature subset being selected. Ferri et al. [50] and
Jain and Zongker [85] have compared several of the feature

TABLE 5
Feature Selection Methods

Method

Propoty

Clennmnicnts

Exhanstive Swwl

i

Livaluate all (‘4) poszihle smbscts.

‘Guaranteed 1o find Lthe opthaal snb-
sot; not feasible lor even moder-
ately Lape values of v and o,

Drancli-and-Tourd Seatch

lises the woll-known braneli-mxl-
Liound scarch method; only a frac-
tinm of a1l possible featnee subsets
necd to be enumeriadad o find Bhe
optinial subset.

set provided the critecion [anction
satislies the monotouicity propecty;
the worst-case comploexity of this
afgorithin is cxponential,

Dozt Individual Featupes

Falnare all the m featuves inedivid-
wally; seleel the best v individaal
features,

e euential Forward Seloction

(SFY4}

Select the hesr single featine and
chieny sl ome featioes at a thne
which in combination with the
selected Teatures maximizes the eri-
torion function.

(4138)

Start with all the  fealures and sae
cessively delete one feactire al a
titne.

ter Joad o i eptimal subsel,

CGuaranteed Lo ind the optimal snb-

Computatlonally simpie; not likely

Ouee a feature is retained, it canno

b diseardeed; compital ionally
attractive sineo to select a subser of
siwe 2, it cxamines ouly {d — 17 possi-
ble subsars,

{hiee a feature is deloted, 1 caunot
be hrought back into the optimal
sithsel; reguires more cormpirbation
than sequential forward seleclion.

S Plus talke away v Schection

Sequential Forward leating Search )
(SFFS) and Sequential Packward
Flonting Yearel (SBEFS)

Tirst enlarge the featire subser by {
features vsing forward seloction

and then delele r Ieatures vsing
backward selection,

Aveids the problein of featkre sub-
sot “nosting” cncountered ju 5108
ang SB35 methods; necd to seleet

values of Land »{{ > ).

A peneralization of #plus-i take
away-r" method; the values of T aud
+are deteemined antomatically and
updated dynunically,

Provides close Lo optimal selution
ot au alfordable compalational cost.
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" selection algorithms in terms of classification error and run
time. The general conclusion is that the sequential forward
floating search (SFES) method performs almost as well as
the branch-and-beund algorithm and demands lower
cemputational resources. Somol et al, [154] have proposed
an adaptive version of the SFFS algorithin which has been
shown to have superior porformance.

The feature scloction methods in Table 8 can be used
with any of the well-known classifiers. But, if a multilayer
feed forward network is used for pattern classification, then
the node-pruning method simultancously determines both
the optimal feature subset and the optimal netwark
classifier [26], [103]. First train a network and then remove
the least salient node {in input or hidden layors). The
reduced network is trained again, followed by a removal of
yet another least salicnt node. This procedure is repeated
until the desired trade-off between classification error and
size of the network is achieved. The pruning of an inpnit
node is equivalent to removing the cotresponding feature.

How reliable are the feature selection results when the
ratic of the available number of haining samples to the
number of features is small? Suppose the Mahalanobis
distance [58] is used as the feature sclection criterion. It
depends on the inverse of the average class covariance
mairix. The imprecision in its estimale in small sample size
situations can result in an optimal feature subset which is
quite different from the optimal subset that would be
obtained when the covariance matrix is known. Jain and
Zongker [85] illustrate this phenoraenon for a two-class
classification problem involving 20-dimensional Gaussian
class-conditional densities (the same data was also used by
Trunk [157] to demonstrate the curse of dimensionality
phenomenon). As expected, the quality of the selected
feature subsct for small training sets is poor, but improves
as the raining set size increases. Por example, with 20
patterns in the training set, the branch-and-bound algo-
rithm selected a subset of 10 featuros which included only
five features in common with the ideal subset of 10 features
(when densities were known). With 2,500 patterns in the
training set, the branch-and-bound procedure selected a 10-
feature subset with only one wrong feature.

Tig. 6 shows an example of the feature selection
procedure using the floating search technique on the PCA
features in the digit dataset for two different training set
sizes. The lest sct size is fixed at 1,000 patterns. In each of
the selected feature spaces with dimensionalities ranging
from 1 to 64, the Bayes plug-in classifier is designed
assuming Gaussian densities with equal covariance
malrices and evaluated on the test sct. The feature selection
criterion s the minimum pairwise Mahalanobis distance. In
the small sample size case (lotal of 100 training patlerns),
the curse of dimensiomality phenomenon can be clearly
observed. In this case, the optimal number of fealures is
about 20 which equals n /3 (n = 100), where n is the numbcer
of training patterns. The rule-of-thumb of having less than
/10 features is on the safe side in general.

5 CLASSIFIERS

Once a feature selection or classification procedure finds a
proper representation, a classificr can be designed using a
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Fig. 8. Classification error vs, the number of features using the floating
search feature salection technique (see text).

number of possible approaches. In practice, the choice of a
clagsifier is a difficult problem and it is oflen based on
which classifier(s) happen to be available, or best known, to
the user.

We identify three different approaches to designing a
classifier. The simplest and the most intuitive appreach to
classifier design is based on the concept of similarity:
patterns that are similar should be assigned to the same
class. 8o, once a good metric has been established to define
similarity, patterns can be classified by template matching
or the minimum distance classifier using a few prototypes
per class. The choice of the melric and the prototypes is
crucial to the success of this approach. In the nearest mean
classifier, selecting protolypes is very simple and robust;
each pattern class is represented by a single prototype
which is the mean voctor of all the training patterns in thal
class, More advanced techniques for computing prototypes
are vector quantizalion [115], [17]1] and learning vector
quantization [92], and the data reduction methods asso-
ciated with the one-nearcst neighbor decision rule (1-NN),
such as editing and condensing [39]. The most
straightforward 1-NN rule can be conveniently used as a
benchmark for all the other classifiers since it appears to
always provide a reasonable classification performance in
most applications. Further, as the 1-NN classifier does not
require any user-specified parameters {except perhaps the
distance metric used to find the nearest neighbor, but
Buclidean distance is commonly used), its classification
results are implementation independent.

In many classification problems, the classifier is
expected to bave some desired invariant properlics. An
example is the shift invariance of characters in character
recognition; a change in a character’s location should not
affect its classification. 1f the preprocessing or the
representation scheme does not normalize the input
pattern for this invariance, then the same character may
be represented at multiple positions in the feature space.
These positions define a one-dimensional subspace. As
more invariants are considered, the dimensionality of this
subspace correspondingly increases. Template matching
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or the nearest mean classifior can be viewed as finding
the nearest subspace [116].

The second main concept used for designing pattern
classifiers is based on the probabilistic approach. The
optimal Bayes decision rule {with the 0/1 loss function)
assigns a paltern to the class with the maximum posterior
probability. This rule can be modified to take into account
costs associated with different types of misclassifications.
bor known class conditional densities, the Bayes decision
rule gives the optimum classifier, in the sense that, for
given prior probabilities, less function and class-condi-
tional densities, no other decision rule will have a lower
risk {i.c., expected value of the loss function, for example,
probability of error). If the prior class probabilities are
equal and a 0/1 loss function is adopted, the Bayes
decision rule and the maximum likelihood decisien rule
exaclly coincide. In practice, the empirical Bayes decision
rule, or “plug-in” r1ule, is wused: the estimates of the
densities are used in place of the true densities. These
density estimates are either parametric or nonparametric.
Commonly used parametric models are multivariate
Gaussian distributions [58] for continuous features,
binomial distributions for binary features, and
mutinormal distributions for integer-valued (and catego-
rical) features. A critical issue for Gaussian distributions
is the assumption mace about the covariance matrices. If
the covariance matrices for different classes are assumed
to be identical, then the Bayes plug-in rule, called Bayes-
normal-lincar, provides a linear decision boundary. On
the other hand, if the covariance matrices are assumed to
be different, the resulting Bayes plug-in rule, which we
call Bayes-normal-quadratic, provides a quadiratic
decision boundary. In addition to the commonly used
maximum likelihood estimator of the covariance matrix,
various regularization techniques [54] are available to
obtain a robust estimate in small sample size situations
and the leave-one-out estimator is available for
minimizing the bias [76].

A logistic classifier [4], which is based on the maximum
likelihood approach, is well suited for mixed data types. For
a two-class problem, the classifier maximizes:

I a@io [ o0, (8)

max
f? :
F:it e wy

£, 21y

whetre g;(2; &) is the posterior probability of class wj, given
x, 6 denotes the set of unknown parameters, and ;7
denotes the #th training sample from class wy, 7 = 1, 2. Given
any discriminant function f{z; #), where 0 is the parameter
vectar, the posterior probabilitics can be derived as

gz =1+ f:y:p(—f)(:r:;.‘]))}_l,

2 (9}
dula;0) == (1 + exp(D( 00))

which arc called logistic functions. For lineatr discriminants,
Dfz;8), (8) can be easily optimized. Equations (8) and (9)
may also be used for estimating the class conditional
posterior probabilitics by optimizing D{z;0) over the
training set. The relationship between the discriminant
function D(z;#) and the posterior probabilities can be
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derived as follows: We know that the log-discriminant
function for the Bayes decision rule, given the posterior
probabilities g (z;8) and g(x;0), i log(g (o )/ ¢a(x;0)).
Agsume that D(x; 0} can be optimized to approximate the
Baycs decision boundary, ie.,

D(z:0) = log(qi (2; 8}/ @2 (: 6)). (10)

We also have

g (2 8) + ol 3y =1

(1)

Solving {10) and (11) for ¢ («c; 8) and g, #) results in (9).

The two well-known nonparametric decision rules, the
k-nearest neighbor (A-NN) rule and the Parzen classifier
{the class-conditional densities arve replaced by their
ostimates using the Parzen window approach), while
similar in nahuwre, give different results in practice. They
both have essentially one free parameter each, the number
of neighbors %, or the smoothing paramoter of the Parzen
kernel, both of which can be optimized by a leave-one-out
estimate of the error rate. Turther, bath these classifiers
require the computation of the distances between a test
pattern and all the patterns in the Lraining scl. The most
convenient way to aveid these large numbers of computa-
tions is by a systematic reduction of the training set, e.g., by
vector quantization techniques possibly combined with an
optimized metric or kernel [60], [61]. Other possibilities like
table-look-up and branch-and-bound methods [42] are less
efficient for large dimensionalitics.

The third category of classificrs is to construct decision
boundaries {geometric approach in Fig. 2) directly by
optimizing certain error criterion. While this approach
depoends on the chosen metric, sometimes classifiers of this
type may approximate the Bayes classifier asymptotically.
The driving force of the training procedure is, however, the
minimization of a criterion such as the apparent classifica-
tion error or the mean squared error (MSE) between the
classifier output and some preset target value. A classical
example of this lype ol classifier is [isher's linear
discriminant that minfiimizes the MSE between the classifier
output and the desired labels. Another example is the
single-layer perceptron, where the separating hyperplanc is
iteratively updated as a function of the distances of the
misclassified patterns from the hyperplane. T the sigmoid
function is used in combination with the MSE criterion, as
in feed-forward neural nets (also called multilayer percep-
trons}, the perceptron may show a behavior which is similar
to other lincar classifiors [133]. It is important to note that
neural networks themselves can lead to many different
clagsifiers depending on how they arc trained. While the
hidden layers in multilayer perceptrons allow nonlincar
decision boundaries, they also increase the danger of
overlraining the classifier since the number of network
parameters increases as more layers and more neurons per
layer are added. Thercfore, the regularizalion of neural
networks may be necessary. Many regularization mechan-
isms are already built in, such as slow training in
combination with early stopping. Other regularization
methods include the addition of noise and weighl decay
(18], [28], [137], and alse Bayesian learning |113].
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One of the inleresting characteristics of mullilayer
perceptrons is that in addition to classifying an input
pattern, they also provide a confidence in the classification,
which is an approximation of the posterior probabilities,
These confidence values may be used for rejecting a test
pattern in case of doubt, The radial basis function (about a
Gaussian kernel) is better suited than the sigmoid Lransfer
function for handling outlicrs. A radiat basis network,
however, is usually trained differently than a multilayer
perceptron, Instead of a gradient search on the weights,
hidden neurons are added until some preset performance is
reached. The classification result is comparable to situations
where each class conditional density is represented by a
weighted sum of Gaussians (a so-called Gaussian mixture;
see Section 8.2).

A special type of classifier is the decision tree [22], |30],
[129], which is trained by an iterative selection of individual
features that are most salient at each node of the tree. The
criteria for feature sclection and tree gencration include the
information content, the node purily, or Fisher's criterion.
During classification, just those featwres are undoer con-
sideration that are needed for the test paltern under
consideration, so feature sclection is implicitly built-in,
The most commonly used decision tree classifiers are binary
in nature and use a single feature at each node, resulting in
decision boundaries that are parallel to the feature axcs
[149]. Consequently, such decision trees are intrinsically
suboptimal for most applications. However, the main
advantage of the tree classifier, besides its speed, is the
possibility to interpret the decision rule in terms of
individual features, This makes decision trees atteactive
for interactive usc by experts. Like neural nctworks,
decision trees can be easily overtrained, which can be
avoided by using a pruning stage [63], [106], |128]. Drecision
tree classification systems such as CART [22] and C4.5 [129]
are available in the public domain* and therefore, often
used as a benchmark.

One of the most interesting recent developments in
classifier desipn is the introduction of the support vector
classifier by Vapnik [162] which has also been studied by
other authors [23], [144], [146]. It is primarily a two-class
classifier. The optimization criterion here is the width of the
margin between the classes, e, the empty area around the
decision boundary defined by the distance to the nearcst
training patterns. These palterns, called support vectors,
finally define the classification function. Their munber is
minimized by maximizing the margin.

The decision function for a two-class problem derived by
the supporl vector classifier can be written as follows using
a kernel function K{x.,®) of a new pattern 2 {to be
classified) and a Iraining pattern ;.

D(x) = Z oI (g, ) + s

PEARY

(12)

where 9 is the support vector set {a subsct of the training
set), and A; — &1 the label of object a;. The paramciers
a; > 0 are optimized during training by
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constrained by A;0(x;) = 1 — &y, Va; in the training set. Ais
a diagonal maitix containing the labels A; and the matrix K
stores the values of the kernel function K (z;, =) for all pairs
of training patterns. The set of slack variables &; allow for
class overlap, controlled by the penalty weight C == 0. For
7 = 0o, no overlap is allowed. Equation (13) is the dual
form of maximizing the margin (plus the penalty termy.
During optimization, the valucs of all «; become 0, except
for the support vectors, So the support vectors are the only
ones that are finally needed. The ad hoc character of the
penalty term (error penalty) and the computational com-
plexity of the training procedure {a quadratic minimization
problem) are the drawbacks of this method. Various
training algorithms have been proposed in the literature
[23], including chunking [161], Osuna’s decomposition
method [119], and sequential minimal optimization [124].
An appropriate kernel function & {as in kernel PCA, Section
4.1) needs to be sclected. In its most simple form, it is just a
dot product between the input pattern z and a member of
the support sett K{m;,») = -2, vesulting in a linear
classifier. Nonlinear kernels, such as

K(wg,2) = (2 - + 107,

result in a pth-order polynomial classifier, Gaussian radial
basis functions can also be used. The important advantage
of the support vector classifier is that it offers a possibility to
train gencralizable, nonlinear classifiers in high-dimen-
sional spaces using & small training set. Morcover, for large
tratning sets, it lypically selects a small support set which is
necessary for designing the classifier, thereby minimizing
the cemputalional requirements during testing.

The support vector classifier can alse be understood in
terms of the tradilional template matching techniques, The
support vectors replace the prototypes with the main
difference being thal they characterize the classes by a
decision boundary. Moreover, this decision boundary is not
just defined by the minimum distance funetion, butby amore
gencral, possibly nonlinear, combination of these distances.

We summarize the most commenly used classifiers in
Table 6. Many of them represent, in fact, an entire family of
classifiers and allow the uscr to modify several asseciated
parameters and criterion functions. All (or almost all) of
these classifiors are admissible, in the sense that there exist
some clagsification problems for which they are the best
choice, An extensive comparison of a large set of classifiers
over many different problems is the Statl.og project [109]
which showed a large variability over their relative
performances, illustrating that there is no such lhing as an
overall optimal classification rule,

The differences between the decision boundaries obtained
by diffevent classificrs are illustrated in Fig. 7 using dataset 1
(2-dirnensional, two-class problem with Gaussian densitics).
Note the two small isolated arcas for R, in Fig. 7c for the
1-NN rule. The neural network classifier in Fig. 7d even
shows a “ghost” region that seemingly has nothing lo do
with the data. Such regions are less probable for a small
number of hidden layers ab the cost of poorer class
separation,
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TABLE 6
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ds

Methewl

Priperty

Cﬂl nrnents

Teanplade maiching

Asalgy patterns to the most simlar
Lernpelate.

The templates aned the melvie have fo bhe
supiicd by the nser; the proeodoes may
include nenlinear normaltzakions; seale
{(mmedric) deprudent.

Nearest Mean Clagsifior

Agsign patlerns 1o the nearsst class
nean.

Almost no training needed; laat testing,
seade (mateie) dependent.,

Subspace Method

Assipn paktorus fo the Tearest class
anhspaco.

Tustesul of nornadising on invarianes, the
anbapace of the ivarionts @2 wsod; seale
fatric] depeneent.

I-Mearest. Weighbor Rule

Assign pattorns Lo the elass of Lhe
nearest Lraining pallorn,

Mo training nesded; robust perforinance;
loave Losting; seale (medric) depondent.,

le-Mearvest Nelglibor Bnle

Assign paktorns to the mngority cliss
among ke nearest neighbor wsing o
perfovinaaee oplisnieed value for k,

Asymptotically optiial; scale (metric)
dependent; slows testing.

Bayes plug-in

Asgsipn pactern Lo the class which has
the maximum estimated postevior
probability,

Yiclds siimple classilicrs (linear or qua-
dratic) for Caussian distributions; senszi-
Live to dengily cslimalion crrovs.

Lopistic {Massifing

Parsen Classificr

Maxhnum likelihooel rule for lopis-
tie (sigmetdal) postevior probahili-
ties.

- Linear classificr; leeative procedurce; opi-
Cmad for o fawiily of differont distributions
[Ganasiang; suitable foe mixed data typos,

Bayes plug-in cule for Parsen dons
sity estimates with porformanes
optimized kenel,

Agyinplolically oplimal; seale (uecric)
dependent; slow testing.

Irisher Linesa Disevinninani

[inear clasdifier using MS1 optiimi-
Zation,

Single aned fasry similw to Bayes plug-in
for Ganssinn distributions with dentical
COVATLANCe 1atriees,

| Binary Declsion Tree

Finds ason of thresholds for o pat-
tern-depeindent sequence ol features.

Tterative training procedurn; ()\'(\l'tl‘:Linini!, N
sensitivey needs prudiygg fase teating,

p{‘l‘(',[!p[.l'ﬂll

Ttorative optimization of a linear
elamsi{ior,

Soensitive fo training parameters; may pro-
duce conlidenee values,

Multi-layor Pereeptron
(Feed-Forward Nonral Net-
work)

| Radial Basis Notwork

Ttevative: MSE optimization of two
or inore layoers of percoptrons {ne-
rous) uding sigmoid transler une-

! tions,
Iierative MSE eptimizalion ol a

foed-forward nearal network wich ag
Teast one layer of neurons using
Ganssisn-like fransfor finciiona.

Srasitive to training paramcters; sl
training nonlinear elassification function;
may produce confidenee values; overlrain-
ing sensitive; nesds regularization.
Sensilive T training parameters; tonlin-
ear clasafication function; may prodoce
conficlenen values, ovortraining sensitive;
nevets rogllawization: may e robusk oo oud-
laors.

Maxihmises Lhe margin botween tho
clagses by solecling o miuirm

nuniber of Support vectors.

Seale (nelrie] depenclen; floratives slow
trainingy; nonlinear; ovortraining insonsi-
tve; gaod geaeralisdion perforinance.

A larger hidden layer may result in overtraining,. This is
illustrated in Fig. 8 for a netwmk with 10 neurons in the
hidden layer, During training, the test set error and the
training set error are initially almost equal, but after a

increase while the training error keeps on decreasing, The
final classifier after 50 cpochs has clearly adapted to the
noise in the datasel: it tries to separate isclated patterns In a

way that does not contribute to its generalization ability.

6

CLASSIFIER COMBINATION

There are several reasons for combining multiple classifiers
to solve a given classification problem. Some of them are
listed below:

I. A designer may have access to a number of different
classifiers, each developed in a different context and

5. One opoch means going through the entire training data once.

for an entirely different representation/description
of the same problem. An example is the identifica-
tiom of persons by their voice, face, as well as
handwriting,

Sometimes more than a single lraining sct is
available, each collected at a different time or in a
different environment. These training sets may even
uge different features.

Different classifiors trained on the same data may
not only differ in their global performances, but they
also may show strong local differences. Fach
classifier may have its own region in the feature
space where it performs the best.

Some classifiers such as neural networks show
different results with different initializations due to
the randommness inherent in the training procedure.
Instead of selecting the best network and discarding
the others, one can combine various networks,
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Fig. 7. Decision boundaries for two bivariate Gausstan distributed classes, using 30 patierns per class. The following classifiers are used: {a) Bayes-
normal-quadratic, {b) Bayes-normal-linear, {c} 1-NN, and (d) ANN-& (& fesd-forward neural network with one hitdden layer containing 5 neurons). The
regions R, and It; for classes w, and wy, respactively, are found by classifying all the poinls in the two-dimensional feature space.

thereby taking advantage of all the attempts to learn
from the data.

In summary, we may have different feature sets,
different training sets, different classification methods or
different training sessions, all resulting in a set of classifiers
whose outputs may be combined, with the hope of
improving the overall classification accuracy. If this set of
classifiers is fixed, the problem focuses on the combination
function. It is also possible to use a fixed combiner and
optimize the sot of input classifiers, see Section 6.1.

A large number of combination schemes have been
proposed in the literature [172). A typical combination
scheme consists of a set of individual classifiers and a
combiner which combines the results of the individual
classifiers to make the final decision. When the individual
classifiers should be invoked or how they should interact
with each other is determined by the architecture of the
combination scheme. Thus, various combination schemes
may differ from each other in their architectures, the
characteristics of the combiner, and selection of the
individual classifiers.

Various schemes for combining multiple classifiers can
be grouped into three main categories according to their
architecture: 1} parallel, 2) cascading (or serial combina-
tion), and 3) hierarchical (tree-like). In the parallel archi-
tecture, all the individual classifiers are invoked
independently, and their results are then combined by a
combiner. Most combination schemes in the literature
belong to this category. In the gated parallel variant, the
outputs of individual classifiers are selected or weighted by
a gating device before they are combined. In the cascading
architecture, individual classificrs are invoked in a lincar
sequence, The number of possible classes for a given pattern
is gradually reduced as more classifiers in the sequence
have been invoked. For the sake of efficiency, inaccurate but
cheap classifiers (low computational and measurement
demands) are considored first, followed by more accurate
and expensive classifiers, [n the hierarchical architecture,
individual classifiers are combined into a structure, which
is similar fo that of a decision tree clagsifier. ‘The tree nodes,
however, may now be associated with complex classifiers
demanding a large number of features. The advantage of
this architecture is the high efficiency and flexibility in
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Fig. 8. Classification arror of a neural network classifier using 10 hidden
units trained by the Levenberg-Marguardt rule for 50 epochs from two
classes with 30 patterns sach (Dataset 1}. Test set error is based on an
independent set of 1,000 patterns.

exploiting the discriminant power of different types of
features. Using these three basic archilecfures, we can build
even more complicated classifier combination systems.

6.1 Selection and Training of Indlvidual Classifiers

A classifier combination is especially useful if the indivi-
dual classifiers are largely independent. If this is not already
guaranteed by the use of different training sefs, various
resampling techniques like rotation and bootstrapping may
be used to artificially create such differences. Examples are
stacking [168], bagging [21], and boosting (or ARCing)
[142]. In stacking, the outputs of the individual classifiers
are used to train the “stacked” classifier, The final decision
is made based on the outputs of the stacked classifier in
conjunction with the outputs of individual classifiers.

In bagging, different datasets arc created by boot-
strapped versions of the original dataset and combined
using & fixed rule like averaging. Boosting [52] is another
resampling technigue for generating a sequence of training
data sets, The distribution of a particular training set in the
sequence is overrepresented by patterns which were
misclassified by the earlier classifiers in the sequence. In
boosting, the individual classifiers are trained hierarchically
to learn to discriminate more complex regions in the feature
space. The original algorithm was proposed by Schapire
[142], who showed that, in principle, it is possible for a
combination of weak classifiers {whose performances are
only slightly better than random guessing) to achieve an
error rate which is arbitrarily small on the training data.

Sometimes cluster analysis may be used to separate the
individual classes in the training set into subclasses.
Consequently, simpler classifiers (e.g., lincar) may be used
and combined later to generate, for instance, a piccewise
linear result [120].

Instead of building different classifiers on different sets
of training paltterns, different feature sets may be used, This
even more explicitly forces the individual classifiers to
contain independent information. An example is the
random subspace method [75].
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6.2 Combiner

After individual classifiers have been selected, they need to
be combined together by a module, called the combiner.
Various combiners can be distinguished from cach other in
their trainability, adaptivity, and requirement on the output
of individual dlassifiers. Combiners, such as voting, aver-
aging (or sum), and Borda count [74] are static, with no
fraining required, while others are trainable. The trainable
combiners may lead to a better improvement than static
combiners al the cost of additional training as well as the
requirement of additional training data.

Some combinalion schemes are adaptive in the sense that
the combiner evaluates {or weighs) the decisions of
individual classificrs depending on the input pattern. In
contrast, nonadaptive combiners treat all the input patterns
the same. Adaptive combination schemes can further
exploit the detailed evror characteristics and expertise of
individual classifiers, Ixamples of adaptive combiners
inctude adaptive weighting [156], associative switch,
mixture of local experts (MLE) [79], and hierarchical
MLE [87].

Different combiners expect different types of output
from individual classifiers. Xu et al. [172] grouped these
expectations into three levels: 1) measurement (or con-
fidence), 2) rank, and 3) abstract. At the confidence level, a
classifier outputs a numerical value for cach class indicating
the belief or probability that the given input pattern belongs
{o that class. At the rank level, a classifier assigns a rank to
each class with the highest rank being the first choice. Rank
value cannet be used in isolation because the highest rank
does not necessarily mean a high confidence in the
classificatior.. At the abstract level, a classifier only outputs
a unique class label or several class labels {in which case,
the classes are equally good). The confidence level conveys
the richest information, while the abstract level contains the
least amount of information about the decision being made,

Table 7 lists a number of representative combination
schemes and their characteristics, This is by no means an
exhaustive list,

6.3 Theoretical Analysis of Combination Schemes

A large number of experimental studies have shown that
classifier combinalion can improve the recognition
accuracy. However, there exist only a few thcorclical
explanations for these experimental results, Morcover, most
explarations apply to only the simplest combination
schemes under rather restrictive assumptions. One of the
most rigorous theories on classifier combination is
presented by Kleinberg [91].

A popular analysis of combination schemes is based on
the well-known bias-variance dilemma [64], [93]. Regres-
sion or classification crror can be decomposed into a bias
term and a variance term. Unstable classifiers or classifiers
with a high complexity {or capacity), such as decision trees,
nearest neighbor classifiers, and large-size neural networks,
can have universally low bias, but a large variance, On the
other hand, stable classificrs or classifiers with a low
capacity can have a low variance but a large bias.

Tumer and Ghosh [158] provided a quantitative analysis
of the improvements in classification accuracy by combin-
ing multiple neural networks. They showed that combining
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TABLE 7
Classifier Combination Schemes
Seherne Arvehitechae Tratnable | Adaptve | Info-level Clomimts
Voriug Parallol Nn [ No Abstract Assurges independent. classifiors
Surn, meat, median | Pacadlol No I No Conficlence | Robusl; assnmes ndopendent con-
fidence esthmateors
Produet, min, max | Parallol | No | N Canfidence | Assuiues indeponden, features
" Goneraliznd ensom- | Pacallel Yoy No Coufidence | Considers evvor covvelation
ble
Adaplive woinliting | Parallel Yes Yoy Coufideirce | Explores local cxper
- Seacking - Parallol Yew No Confidence | Good ilization of training datn, i
Borda count, Parallel Yes Na Nank Converls ranks into confidences |
Lopistic repression Parallol Yeu No Rauk Clanvarts rauks ko eonfidences
confidonce
Class set vodueton | Parallel Yos / No | No TRank " | EMiciens
eagseading cotlidence
Drenpsler-Bhafor Tarallel Yos No Rank PFuscs on-probabitistic confi-
conlfidence | donces
sy ntegrals Paradlel Yes No Coulilence | inses non-probalilistic conli-
onees
[ Mixture of local Gated paraliel | Yes Yos Counfidence | Iixplares local oxpertise;
exports (MLE} Jnint optimizakion
Hicrarchical MIE Galod pavallel | Yes Yeu Comfidence | Same as MLE; Terarchical
Tdorarchical ;
Associative switeh Pavalle] Yos Yos Alstract ‘Same a5 MLE, hut no joint Optﬁ]ﬁ-_
Aution
[Tapging Tarallel Yes Tl Ne Confidence | Needs many comparable ciassifiors
i Hoosris rarallel Yes | Yo FAbLract Linproves marging unlikely ey
hicrarehical ovirlraing sensitive 1o mislabels;
needs many comparable classifions
Tandon stubspace Parallal Yes | No Conlidence | Needs many comparable classiflers
Neural tres Hinratehieal Ve No Conlidence | iandies large munboers of classes

nelworks using a linear combiner or order statistics
combiner reduces the variance of the actual decision
boundaries around the optimum boundary. In the absence
of-network bias, the reduction in the added error (to Bayes
errot) is directly proportional to the reduclion in the
variance. A linear combination of N unbiased neural
networks with independent and identically distributed
(i.i.d) error distributions can reduce the variance by a
factor of N. At a first glance, this result sounds remarkable
for as N approaches infinity, the variance is reduced to zero.
Unfortunately, this is not realistic because the 1i.d. assump-
tion breaks down for large N. Similarly, Perrone and
Cooper [123] showed that under the zero-mean and
independence assumption on the misfit (difference between
the desired output and the actual output), averaging the
outputs of N neural networks can reduce the mean square
error (MSL) by a factor of & compared to the averaged MSE
of the N neural networks. For a large N, the MSE of the
ensemble can, in principle, be made arbitrarily small,
Unfortunately, as montioned above, the independence
assumption breaks down as N increases. Perrone and
Cooper [123] also proposed a generalized ensemble, an
optimal linear combiner in the least sguare crror sense, In
the generalized ensemble, weights are derived from the
ercor correlation matrix of the N neural networks. It was
shown that the MSE of the generalized ensemble is smaller
than the MSE of the best neural nctwork in the ensemble,
This result is based on the assumptions thal the rows and
columns of the crror correlation matrix are lincarly

independent and the cxror correlation matrix can be reliably
estimated. Again, these assumptions break down as N
increases.

Kittler et al. [90] developed a common theoretical
framework for a class of combination schemes whoere
individual classifiers use distinet features to estimate the
posterior probabilities given the input pattern. They
introduced a sensitivity analysis to explain why the sum
{or average) rule outperforms the other rules for the same
class. They showed that the sum rule is less sensitive than
others (such as the “product” rule) to the error of individual
classifiers in estimating posterior probabilities. The sum
rule is most appropriate for combining diffevent estimates
of the same posterior probabilities, e.g., resulting from
different classifier initializations (case (4) in the inlroduction
of this section). The product rule is most appropriate for
combining preferably error-free independent probabilities,
eg. resulting from well estimated densities of different,
indopendent feature sels (case (2) in the introduction of this
section).

Schapire et al. [143] proposed a different explanalion for
the effectiveness of voting (weighted average, in fact)
methods, The explanation is based on the notion of
“margin” which is the difference between the combined
score of the correct class and the highest combined score
among all the incorrect classes. They established that the
generalization error is bounded by the tail probability of the
margin distribution on training data plus a term which is a
function of the complexity of a single classifier rather than



24 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 1,

the combined classifier. They demonstrated that the
boosting, algorithm can effectively improve the margin
distribution. This finding is similar to the property of the
support vector classifier, which shows the importance of
training patterns near the margin, where the margin is
defined as the area of overlap between the elass conditional
densities,

6.4 An Example

We will illustrate the characterislics of a number of different
classifiers and combination rules on a digit classification
problem {Datasat 3, see Section 2). The classifiers nsed in the
experiment were designed uvsing Matlab and were not
optimized for the data set. All the six different feature sels
for the digit dataset discussed in Section 2 will be used,
enabling us to illustrale the performance of various
classifier combining rules over different classifiers as well
as over different feature sets. Confidence values in the
outputs of all the classifiers are computed, either directly
based on the posterior probabilities or on the logistic output
function as discussed in Section 5. These outputs are also
used to obtain multiclass versions for intrinsically two-class
discriminants such ag the Fisher Linecar Discriminant and
the Support Voctor Classifier (SVC). For these two
classifiers, a tolal of 10 discriminants are computed belween
each of the 10 classes and the combined set of the remaining
classes. A test pattern is classified by selecting the class for
which the discriminant has the highest confidence,

The following 12 classifiers are used {also see Table 8):
the Bayes-plug-in rule assuming normal distributions with
different {Bayes-normal-quadratic} or equal covariance
matrices (Bayes-normal-linear), the Nearest Mean (NM)
rule, 1-NN, 4NN, Parzen, Fisher, a binary decision tree
using the maximum purity criterion [21] and early pruning,
two feed-forward neural networks (based on the Matlab
Neural Network Toolbox) with a hidden layer consisting of
20 (ANN-20) and 50 (ANN-50} ncurons and the linear
{SVC-linear) and quadratic (SVC-quadratic) Support Voctor
classificrs. The number of neighbors in the &-NN rule and
the smoothing parameter in the Parzen classifier are both
optimized over the classification result using the leave-one-
out error estimate on the training set. For combining
classifiers, the median, product, and voting rules are used,
as woll as two trained classifiers (NM and 1-NN). The
training set used for the individual classifiers is also used in
classifier combination.

The 12 classifiers listed in Table 8 were trained on the
same 500 (10 x 50) training patterns from each of the six
feature sets and tested on the same 1,000 (10 x 100) test
patterns, “The resulting classification errors {in percentage)
arc reperted; for each feature set, the best result over the
clagsifiers is printed in bold. Next, the 12 individual
classifiers for a single feature set were combined using the
five combining rules {median, product, voting, nearest
mean, and 1-NN). For example, the voting rule {row) over
the classifiers using feature set Number 3 (column) yields
an error of 3.2 percent. It is underlined to indicate that this
combination result is better than the performance of
individual classifiers for this feature set. Finally, the outputs
of each classifier and each classifier combination scheme
over all the six feature sets are combined using the five
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combination rules (last five columns). Tor example, the
voling rule {(column) over the six decision tree classifiers
{(row} yields an crror of 21.8 pereenl. Again, it is undertined
to indicale thaf this combination result is better than each of
the six individual results of the decision tree. The 5 x5
block in the bottom right part of Table 8 presents the
combination resulls, over the six feature sets, for the
classifier combination schemes for each of the separate
fealure sefs.

Smne of the classifiers, for example, the decision lree, do
not perform well on this data. Also, the neural network
classificrs provide rather poor optimal solutions, probably
due to nonconverging lraining sessions. Some of the simple
classificrs such as the I-NN, Bayes plug-in, and Parzen give
good results; the performances of different classifiers vary
substantially over different feature sets. Due lo the
relatively small training set for some of the large feature
sels, the Bayes-normal-quadratic classifier is outperformed
by the linear one, bul the SVC-quadratic generally performs
better than the SVC-linear. This shows that the SVC
classifier can find nonlinear selutions without increasing
the overfraining risk.

Considering the classifier combinalion results, it appears
that the trained classifier combination rules are not always
better than the use of fixed rules. S5till, the best overall vesult
(1.5 percent error) is obtained by a trained combination rule,
the nearest mean method. The combination of different
classifiers for the same feature set (columns in the table)
only slightly improves the best individual classification
results. The best combination rule for this dataset is voting,
The product rule behaves poorly, as can be expected,
because different classiliers on the same feature set do not
provide independent confidence values. The combination of
results obtained by the same classifier over different feature
sets (rows in the table) frequently outperforms the best
individual classifier result. Sometimes, the improvements
are substantial as is the case for the decision tree. Here, the
product rule does much better, but occasionally it pexforms
surprisingly bad, similar to the combination of neural
network classifiers. This combination rute (like the wini-
mum and maximum rules, not used in this experiment) is
sensitive to poorly trained individual classiliers. inally, it
is worthwhile to observe that in combining the neural
network results, the trained combination rules do very well
(classification errors between 2.1 percent and 5.6 percent) in
comparison with the fixed rules {classification crrors
between 16.3 percent to 90 percent).

7 ERROR ESTIMATION

The classification error or simply the error rate, P, is the
ultimate measure of the performance of a classifier.
Compoting classifiers can also be evaluated based on
their crror probabilities. Other performance measures
include the cost of measuring features and the compula-
tional requirements of the decision rule. While it is easy
to dofine the probability of error in terms of the class-
condilional densities, il is very difficult to obtain a closed-
form expression for P,. Even in the relatively simple case
of multivariale Gaussian densities with unequal
covariance malrices, il is not possible lo write a simple
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TABLE 8
Error Rates {in Percentags) of Different Classifiers and Classifier Combination Schemes

[ TFeature set (soc Section 2) Combination [Rnle

| Classifior / No. T[ No. 2| No. 3| No. 4 [ Ko. 5 | Now 6 || Med. | Prod. | Votg mj"lfﬁ“
Combining rula | ) _ N

T Bayus-wonmat- || 257 | 58 | 128 | 62 [ 212 | 310 [[ 28 | 6.3 68 | 67 | 50
aquadlratic
Tayes-notmal- || 21.5 | 3.4 57 90 | 18.0 | 29.1 377 a1 51 | 38| 42
linear

| Nearcst Mean 224 14.1 8.0 9.4 278 540 || 6.2 4.0 T 08 |46
1NN 192 | 90 44 | a7 |7 50| 26} LT 40 |13 | 3.0
k-NN 180 | 9.2 44 | 8.7 | 184 [ 5L0 || 54 | 42 | BI | 86 | 26
Tarzen 1T 70 Ay | 87 | 185 | a2l 29 [ 2x | 5l 31 | 3l
Fisher 248 | 47 82 | 153 | 210 | 282 || 32 | 5.2 07 | A | as
Tee, Treo 184 | 408 | 400 | 549 | 508 | 329 || isd | 110 | 208 | 10.2 | 108
ANN-20 00.0 | 46 | 146 | 85.2 | 900 | 328 || 177 | 900 | 327 | 2 21
ANN-50 245 | 180 | &2.3 | 810 | 265 | 717 || 244 | 807 | 163 | £5 | 24
SVC-linear 246 | G6 a.t 77 | 204 | & |[ 108 | 101 47 | 6h | a8
SVCquadratic || 21.2 | 6.1 | 40 60 |13 |8 30 | 84 38 [ 40| 40
Median 19.0 | 43 36 | 45 | It | 287 || 23 | 23 50 | L8 ] 5.0
Produck: 204 | 13.1 4.4 82 | 401 | 412 || 234 [ R4 56.8 | 85.1 | 685
Voting 175 | 3.5 32 97 | i68 | 318 || 24 | 20 48 | 21 | 20
Nearcst Moean 19.8 3.7 1.8 740 181 | 266 || 2.0 1.9 5,1 1.5 | 18
1NN Wa a8 [ 41 [ v [ B8 | 1R I8 ] 41 [18 ] 18"

analytical expression for the error rate. If an analytical
expression for the error rate was available, it could be
used, for a given decision rule, to study the behavior of
£, as a function of the number of features, true parameter
values of the densities, number of training samples, and
prior class probabilities. For consistent fraining rules the
value of F. approaches the Baycs error for increasing
sample sizes. For some families of distributions tight
bounds for the Bayes error may be obtained [7]. For finite
sample sizes and unknown distributions, however, such
bounds are impossible [6], [41].

In practice, the error rato of a recognition system must be
cstimated from all the available samples which are split into
training, and test sels [70]. The classifior is first designed
using training samples, and then it is evaluated based on its
classification performance on the lest samples, The percen-
tage of misclassified test samples is taken as an estimate of
the error rate. In order for this error estimate to be reliable
in predicting future classification performance, not only
should the training set and the test set be sufficiently large,
but the training samples and the test samples must be
independent. This requirement of independent training and
test samples is still ofton overlooked in practice.

An important point to keep in mind is that the error
estimate of a classifier, being a function of the specific
training and test sets used, is a random variable. Given a
classificr, suppose 7 is the number of test samples (out of
a total of ) that are misclassified. It can be shown that the
probability density function of 7 has a binomial distribu-
tion. The maximum-likelihood estimate, A, of I, is given
by £ = r/n, with F{(7%) = P, and Var(?) = P.(1 - B} /n.
Thus, £, is an unbiased and consistent estimator. Because
B is a random variable, a confidence interval is asscciated
with it. Suppose n = 250 and v =50 then 7%, = 0.2 and a
95 percent confidence interval of £, is {0.15,0.25). The
confidence interval, which shrinks as the number n of test

samples increases, plays an important role in comparing
two competing classifiers, ¢4 and O Suppose a total of
100 test samples are available and ¢ and €} misclassify 10
and 13, respectively, of these samples. 1s classifier £ better
than 4?7 The 95 percent confidence intervals for the true
error probabilitics of these classifiers ave (0.04,0.16) and
{0.08,0,20), respectively, Since lhese confidence intervals
overlap, we canoot say that the performance of | will
always be superior to that of Cs. This analysis is somewhat
pessimistic due to positively correlated crror estimales
based on the same test set [137].

How should the available samples be split o form
training and test sots? If the training sef is small, then the
resulting classifier will not be very robust and will have a
low generalization ability. On the other hand, if the test sct
is small, then the confidence in the estimated error rale will
be low, Various methods that are commonly used to
cstimate the error rate are summarized in Table 9. These
methods differ in how they utilize the available samples as
training and test sets. If the number of available samples is
extremely large (say, 1 million), then all these methods are
likely to lead to the same estimate of the error rate, For
example, while it is well known that the resubstitution
method provides an optimistically biased estimate of the
error rate, the bias becames smaller and smaller as the ratio
of the number of training samples per class to the
dimengionality of the featurc vector gets larger and larger,
There are no geod guidelines available on how to divide the
available samples into training and test scts; Fukunaga [58]
provides arguments in favor of using more samples for
testing the classifier than for designing the classifier, No
malter how the data is split into training and test scts, it
should be clear that different random splits (with the
specified size of training and fest sets} will result in
different error estimates.
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TABLE 9
E:ror Estimation Methods

Wethad

Croperty

Conenis

Resihstitntion deathod

Al the available data is used for
training as well as testing; training
and test sots are the samae,

Holdout Method

Hulf the duta is used for training
aned the remaining data s nseed for
testing; training aned test sels ave
independeoni.

Optimistically biased estimate,
especially when the ratio of sanple
size to dimensionality is small.

Possimistically biasod ostimbe; -
feront pavtitionings will give differ-
onl estinatos.

Leave-oue-out Mothod

Totaiion Methad,
n-fold erosy
validation

oA classifier 1y designed nsing (n — 1)

sanples and evaluated on the one
remaining sample; this is repeated n
times with different training ses of
size (n - 1}

Lgtimate s vnblased hut it has a
large variance; large computational
reciivomoent beeause n different
elassifiers have to be designed,

A eompromise between holdout,

and leave-one-out mothods; divide
tlre available saples into T disjoint
subsots, | <P <n. Uso (F - 1) sub-

holdow: motliod and iz choaper to
implement than leave-one-out
method,

Fatimate has lower Mag than the
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subsof, for test.

sets for fraining and the remaining

Bootatrap Mothad Generate

samiples [48]

Fig. 9 shows the classification error of the Bayes plug-in
linear classifier on the digit dataset as a function of the
number of training patterns. The test set error gradually
approaches the training set error (resubstitution error) as
the number of training samples increases, The relatively
large difference between these two error rates for 100
training patterns per class indicates that the bias in these
two error estimates can be further reduced by enlarging the
training set. Both the curves in this figure represent the
average of 50 experiments in which training sets of the
given size are randomly drawn; the test set of 1,000 patterns
is fixed.

The heldout, leave-one-oul, and rofation methods are
versions of the cross-validation approach. One of the
main disadvantages of cross-validation methods, espe-
clally for small sample size sitnations, ig that not all the
available n samples are used for training the classifier.
Further, the two extreme cases of cross validation, held
outl method and leave-one-oul method, suffer from either
large bias or large variance, respectively. To overcome
this Hmitation, the bootstrap method [48] has been
propesed to estimate the errer rate. The bootstrap method
resamples the available patterns with replacement to
generate a number of “fake” data sets (typically, several
hundred) of the same size as the given training set. These
new training scts can be used not only to estimate the
bias of the resubstitution cstimate, but also to define
other, so called bootstrap estimates of the error rate,
Experimental results have shown that the boolstrap
estimates can outperformi the cross validation eslimates
and the resubstitution estimates of the error rate [82].

many hootstrap sgample
sets of sive 1 by sanpling with
replaceinent; soveral estimators of
the ervor rate can be defined (o.g.,
0 el £832) using the bootstrap

Tootstrap eatimates can have lowor
vartance than the leave-oue-out
niethod; computationally more
dewanding; useful in small samnple
slwn wibtations,

In many pattern recognition applications, it is not
aclequate to characterize the performance of a classifier by
a single number, F,, which measures the overall error rate
of a systom. Consider the problem of evaluating a
fingerprint matching system, where two different yet
related error rates are of interest. The False Acceptance
Rate (HAR) is the ratio of the number of pairs of different
fingerprints that are incorrectly matched by a given systera
to the total number of match attempts. The False Reject Rate
(FRR) is the ratio of the number of pairs of the same
fingerprint that are not matched by a given system to the
tetal number of match attempts. A fingerprint matching
system can be tuned {by setting an appropriate threshold on
the matching score) to operate at a desired value of FAR.
However, if we try to decrease the FAR of the system, then
it would increase the FRR and vice versa. The Receiver
Operating Characteristic {(ROC) Curve [107] is a plot of TAR
versus TRR which permits the system designer to assess the
performance of the recognition system at various operating
points (thresholds in the decision rule). [n this sense, ROC
provides a more comprehensive performance measure than,
say, the equal error rate of the system {(where FRR = FAR}),
Fig. 10 shows the ROC curve for the digit dataset where the
Bayes plug-in lincar classifier is rained on 100 patterns per
class. Examples of the use of ROC analysis are combining
classifiers [170] and feature selection [99].

In addition tc the error rate, another useful perfor-
mance measure of a classifier is its reject rate. Suppose a
test pattern falls near the decision boundary between the
two classes, While the decision rule may be able to
correctly classify such a pattern, this classification will be
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Fig. 9. Glassification errot of the Bayes plug-in lihear classifier (ooual
covariance matrices) as a function of the number of training samples
{leaming curve) for the test set and the training set on the digit dataset.

made with a low confidence. A better alternative would
be to reject these doubtful patterns instead of assigning
them to one of the categories under consideration. How
do we decide when to reject a test pattern? Tox the Bayes
decision rule, a well-known reject option is to reject a
pattern if its maximum a posteriori probability is below a
threshold; the larger the thresheld, the higher the reject
rate. Invoking the reject option reduces the crror rate; the
larger the reject rate, the smaller the error rate. This
relationship is ropresented as an error-reject trade-off
curve which can be used to set the desived operaling
point of the classifier, Fig, 11 shows the error-reject curve
for the digit dataset when a Bayes plug-in knear classifier
is used, This curve is monotenically non-increasing, since
rejecting more patterns either reduces the crror rate or
keeps it the same. A good choice for the reject rate is
based on the costs associated with rojeet and incorrect
decisions (See [66] for an applicd example of the use of
error-reject curves),

8 UnsSUPERVISED CLASSIFICATION

In many applications of pattern recognition, it is extremely
difficult or expensive, or even impossible, to reliably label a
training sample with its true category. Consider, for
example, the application of land-use classification in remate
sensing. In order to obtain the “ground truth” information
{category for each pixel) in the image, either the specific site
associated with the pixel should be visited or its category
should be extracted from a Geographical Information
System, if one is available. Unsupervised classification
refers to situations where the objective is to construct
decision boundaries based on unlabeled training data.
Unsupervised clagsification is also known as data clustering
which is a generic label for a variety of procedures designed
to find natural groupings, or clusters, in multidimensional
data, based on measured or perceived similarities among
the patterns |81]. Category labels and other information
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Fig. 10. The ROC curve of the Bayes plug-in linear classifier for the digit
dataset.

about the source of the data influence the interpretation of
the clustering, not the formation of the clusters.

Unsupervised classification or clustering is a very
difficult problem because data can reveal clusters with
different shapes and sizes (see Fig. 12), To compound the
problem further, the number of clusters in the data often
depends on the resolution {fine vs. coarse) with which we
view the data. One example of clustering is the detection
and delineation of a region containing a high density of
patterns compared to the background. A number of
functional definitions of a cluster have been proposed
which include: 1) patterns within a cluster are more similar
to each other than are patterms belonging to different
clusters and 2) a cluster consisls of a relatively high density
of peints separaled from other clusters by a relatively low
density of points. Even with these functional definitions of a
cluster, it is not easy to come up with an operational
definition of clusters. One of the challenges is to select an
appropriate measure of similarity to define clusters which,
in general, is both data {(cluster shape) and context
dependent.

Cluster analysis is a very important and uselul teehni-
que. The speed, reliability, and consistency with which a
clustering algorithm can organize large amounts of data
constitufe overwhelming reasons to use it in applications
such as dala mining [88], infermation retrieval [17], [25],
image segmentation [55], signal compression and coding
[1], and machine learning [25]. As a consequence, hundreds
of clustering algorithms have been proposed in the
literature and now clustering algorithms continue to
appear. However, most of these algorithms are based on
the following two popular clustering techniques: iterative
square-error partitional clustering and agglomerative hier-
archical clustering, Hierarchical techniques organize data in
a nesled sequence of groups which can be displayed in the
form of a dendrogram or a tice. Square-error partitional
algorithms attempt to obtain that partiion which minimizes
the within-cluster scatter or maximizes the between-cluster
scatter, To guarantec that an optimum solution has been
obtained, one has to examine all possible partitions of the n
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Fig. 11. Error-reject curve of the Bayes plug-in linear classifier for the
digit dataset.

d-dimengional patterns into A clusters (for a given i},
which is not computationally feasible. 50, varicus heuristics
arc used to reduce the search, but then there is no guarantee
of optimality.

Partitional clustering techniques are used more fre-
quently than hierarchical techniques in pattern recognition
applications, so we will restrict our coverage to partitional
methods. Recent studies in cluster analysis suggest that a
user of a cluslering atgorithm should keep the following
issues n mind: 1) every clustering algorithm will find
clusters in a given dataset whether they exist or not; the
data should, therefore, be subjected to tests for clustering
tendency before applying a clustering algorithm, followed
by a validation of the clusters generated by the algorithm; 2)
there is no "best” clustering algorithm. Therefore, a user is
advised to try several clustering algorithms on a
given dataset. TFurther, issues of data collection, data
representation, normalization, and cluster validity are as
important as the choice of clustering strategy.

The prohlem of partitional clustering can be formally
stated as follows: Given n patterns in a d-dimensional
melric space, determine a partition of the patterns into
clusters, such that the patterns in a cluster are more similar
to each other than to patterns in different clusters [81]. The
value of K may or may not be specified. A clustering
criterion, either global or local, must be adopted. A global
criterion, such as square-error, represents each cluster by a
prototype and assigns the patterns to clusters according to
the most similar prototypes. A lecal criterion forms clusters
by utilizing local structure in the data. For example, ciusters
can be formed by identifying high-densily regions in the
pattern space or by assigning a pattern and its % nearest
neighbors to the same cluster.

Most of the partitional clustering techniques implicitly
assume coentinuous-valued fealure vectors so that the
palterns can be viewed as being embedded in a metric
space. If the features are on a nominal or ordinal scale,
Euclidean distances and cluster centers are not very
meaningful, so hicrarchical clustering methods are nor-
mally applied. Wong and Wang [169] proposed a clustering
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Fig. 12. Clusters with different shapes and sizes.

algorithimn for discrete-valued data. The technique of
conceptual clustering or learning from cxamples [108] can
be used with patterns represented by nonnumeric or
symbolic descriptors. The objeclive here is to group patterns
into conceptually simple classes. Concepts are defined in
terms of attributes and patterns are arranged into a
hierarchy of classes described by concepts.

In the following subsections, we briefly summarize the
two most popular approaches to partitional clustering:
square-error clustering and mixture decomposition. A
square-error clustering method can be viewed as a
particular case of mixture decomposition. We should also
point out the difference between a clustering criterion and a
clustering algorithm, A clustering algorithm is a particular
implementation of a clustering criterion. In this sense, there
are a large number of square-error clustering algorithms,
each minimizing the squarc-error criterion and differing
from the others in the choice of the algorithmic parameters,
Some of the well-known clustering algorithms are listed in
Table 10 [81].

8.1 Square-Error Clustering

The most commonly used partitional clustering strategy is
based on the square-error criterion. The general objective
is to obtain that partition which, for a fixed number of
clusters, minimizes the square-crror. Suppose that the
given set of n patterns in d dimensions has somechow
been partiioned into &K clusters {4,y -+, %} such that
cluster €, has ny patlerns and cach pattern is in exactly
one cluster, so that ZLI g v T

The mean vector, or center, of cluster €7, 1s defined as the
centroid of the cluster, or

1 ne
m# == Z:r:!r“,
g

f=1

(1)

where mﬁ“ is the ith pattern belonging to cluster ). The

square-error for cluster Cy is the sum of the squared
Buclidean distances belween each pattern in €y and its
cluster center m*. This squarc-crror is also called the
within-cluster variation

ny "

a (B £l { By .
ey = Z (:I:é'!') - m‘“) (.‘L‘EM - m('i”)).

=1

(15)

The squarc-crror for the entire clustering containing K
clusters is the sum of the within-cluster variations:
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TABLE 10
Clustering Algorithms

Algoritlion

Property

Comments,

H-means

Hoatifies hyperspluwrical olustors;
eould b mextified to [ind hypor-
allipsoidal clusters using
Mauhalanchis dist anee;
eomputationally eflicient,

Newxt b spocify B and the initial
vluster wenfors, Additional parame-
ters for ¢roating new clusters, morg-
ing existing clustors and ontlier
ebasstion ean bo provided.,

| Tuzey K-means

Similar to A -means extept that
eviry pattern has a degree of mem-
beyship into the K clustars (fuzzy
partition).

Noer t1 specify K| initial clester
venters and ¢luster memboership
funetion,

Mivimum Spanning Tree (M)

Clustera aro formed by deleting
incamsistent edges in the M3T of
the data

Nod to provide the definition of an
inconsistent edge.

Mutual Neighborhaord

Computs the mutunl neighbarhoml
value (MNV) for overy pair of pat-
terns, If 25 is the 2" near neiglbor
of z; and m; is the ¢'* near ngigh-
bor of x5, then

MNV(z,2)=p+ 3

pg=1--- K

Newod ta specify the npiglthorhood
dopth, K.

Single-Link (5L}

A hierarchicnl slustering algeritiun
whirh areepts an v X 2 proximity
matrix; cutput 18 a dondropram or a
triw gtructurs; o singllink chaster
is 2 maximally conmeeton subgraph
on tho patterns.

BinpleJink clusters easily #hain
togother and ave often “stragply™;
ol a howristic fo cut the tres to
form clusters (a partitiou),

Camplete-Link (CL)

A hiorarchical clusteriog nlgorithm
which aceopts an o % 1 proximity
matrix; outpnt is a dendrogeam or a
free structure; a completelink clus-
ter i 1 maximally eoanplete sub-
graph on the pattorns.

Completo-link elustors tend to be
amall and eompact which combioe
nmizely into layor clusters even whon
such a hierarehy is nof warranted;
nenzel o bpmristic te form dusters (a
partition).

Wil ure Dosomposibion

Fawh puttern is nssumesd to he
deswn from one of K underlying
papulatitms, or clusters; population
pacameters are sstimated Trom

Tha furm and the number (K) of

underlying population densitics are
assumiy ta be kiown; K can b
astimated nsing a ouraber of criterin
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nnlahelled data.

(see Bection §.2 ).

Fr=> . (1G)

The objective of a squarc-crror clustering method is to find a
partition conlaining & clusters that minimizes £2 for a
fixed K. The resulting partition has also been referred to as
the minimum variance partition. A general algorithm for
the iterative partitional clustering method is given below.

Agorithm for iterative partitional clustering:

Step L. Select an initial partition with K clusters, Repeat
steps 2 through 5 until the cluster membership stabilizes.

Step 2. Generale a new partition by assigning each pattern
to its closesl cluster center.

Step 3. Compute new cluster centers as the centroids of the
clusters.

Step 4. Repeat steps 2 and 3 uatil an optimum value of the
criterion funclion is found.

Step 5. Adjust the number of clustors by merging and
splitting existing clusters or by removing small, or
outlier, clusters.

The above algorithm, without step 5, is alse known as the
K-means algorithn. The details of the steps in this algorithm
must either be supplied by the uscr as parameters or be
implicitly hidden in the computer pregram. [ lowever, these
details are crucial to the success of the program. A big
frustration in using clustering programs is the lack of
guidelines available for choosing K, initial partition, updating
the partition, adjusting the number of clusters, and the
stopping crilerion [8).

The simple K-means partitional clustering algorithm
degeribed above is computationally efficient and gives
surprisingly good resulls if the clusters are compacl,
hyperspherical in shape and well-separated in the fealure
spacc. If the Mahalanobis distance is used in defining the
squared crror in {16), then the algorithm is cven able to
detect hyperellipsoidal shaped clusters. Numerous
attempts have been made to improve the performance of
the basic K-means algorithm by 1) incorporating a fuzzy
criterion funetion 15], resulting in a fuzzy K-means (or
e-means) algorithm, 2) using genetic algorithms, simulated
anncaling, deterministic annealing, and tabu scarch to
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optimize the resulling partition [110], [139], and 3) mapping
it onto a neural nelwork [103] for possibly cfficient
implementation. However, many of these so-called
enhancements to the /(-means algorithm are computation-
ally demanding and require additional user-specilied
parameters for which no general guidelines are available.
Judd et al. [88] show that a combination of algorithmic
enbhancements 1o a squarc-crror clustering algorithm and
distribution of the computations over a network of
workstations can be used to cluster hundreds of thousands
of multidimensional patterns in just a fow minutes.

It is interesting to note how scemingly different concepts
for parlitional clustering can lead to essentially the same
algorithm, Tt is easy to verify lhat the generalized Lloyd
vector quanlization algorithm used in the communication
and compression domain is equivalent to the /{-means
algorithm. A wveclor quantizer (VQ) is described as a
combination of an encoder and a decodoer. A d-dimensional
VQ consists of two mappings: an encoder + which maps the
input alphabet (A} to the channel symbol set (M), and a
decodor 3 which maps the channel symbol sel (M} to the
output alphabet (A), e, () : A — Mand 8(v): M — A,
A distortion measure Dy, ) specifies the cost associated
with quantization, where § = {~(y)). Usually, an optimal
quantizer minimizes the average distortion under a size
constraint on M. Thus, the problem of vector quantization
can be posed as a clustering problem, where the number of
clusters K is now the size of the output alphabet,
A:{fi—1,.... K}, and the goal is to find a quanlization
{referred to as a partition in the K-means algorithm) of the
d-dimensional feature space which minimizes the average
distortion {mean squarce errer) of the input patterns. Vector
quantization has been widely used in a number of
compression and coding applications, such as speech
waveform coding, image coding, cte., where only the
symbals for the output alphabet or the cluster centers are
transmitted instead of the enlire signal [67], [32]. Vector
quantization also provides an cfficient tool for densily
estimation [68]. A kernel-based approach {e.z., a mixture of
Gaussian kernels, where each kernel is placed at a cluster
cenler) can be used to estimate the probability density of the
training samples. A major issue in V() is the seloction of the
output alphabet size. A number of techniques, such as the
minimum description length {MDL) principle [138], can be
used to select this parameter (see Section 8.2). The
supervised version of VQ is ealled [earning veclor quantiza-
tion (LVQ) [92].

8.2 Mixture Decomposition

Finite mixtures are a flexible and powerful probabilistic
modeling tool. Tn slalistical pattern recognition, the main
use of mixtures is in defining formal (i.e., model-based)
approaches to unsupervised classification [81]. The reason
behind this is that mixlures adequately model situations
where each pattern has been praduced by one of a sel of
alternative (probabilistically modeled) sources [155]. Never-
theless, it should be kept in mind that strict adherence 1o
this interpretation is not requirved: mixtures can also be seen
as a class of models that are able to represent arbitrarily
complex probability density funclions. This makes mixtures
also well suited for reprosenting complex class-conditional

JANUARY 2000

densities in supervised learning scenarios (see [137] and
references therein). Finite mixtures can also be used as a
feature selection tool [127]).

8.2.1 Basic Definitions

Consider the following scheme for gencraling random
samples. There are K random sources, cach characterized
by a probability (mass or density) function p,,(y|0.),
parameterized by 0, for s — 1, .., i, Hach time a sample
is to be generated, we randomly choose one of these
sources, with probabilitics {a, ..}, and then sample
from the chosen source. The random variable defined by
this (two-stage) compound generating mechanism is char-
acterized by a finite mixture distribution; formally, its
probability funchion is

N
}J(Y|®H\'1) o L f'*‘um(YWm)_\

in==|

(17)

where cach p,(y|f.) is called a component, and
Oy =101, o Cr o T is usually assumed that
all the components have the same funclional form; for
example, they are all multivariate Gaussian. Fitting a
mixture model to a set of observations y —= {y{!, .. .y™}
consists of estimating the set of mixture parameters that
best describe this data. Although mixtures can be built from
many different types of components, the majority of the
literature focuses on Gaussian mixtures [155].

The two fundamental issues arising in mixture fitting
are: 1) how to estimate the parameters defining the mixture
model and 2) how to estimate the number of components
[159]. For the first question, the standard answer is the
expectation-maximization (EM) algorithm (which, under mild
conditions, converges to the maximum likelihood (MI.)
estimate of the mixture paramelers); several authors have
also advocated the {computationally demanding) Markow
chiin Monte-Carfo (MCMC} method [135]. The sccond
guestion is more difficull; several techniques have been
proposed which are summanized in Section 8.2.3. Note that
the output of the mixture decomposition is as good as the
validity of the assumed component distributions.

B.2.2 EM Algorithm

The expectation-maximization algorithm interprets the
given observalions y as incomplete data, with the missing
part being a set of labels associated with y,

wo= {mt L)

Missing variable 200 — 2 . 28" indicates which of the i
components genorated y A0 it was the wmth component,
then & = I and z}f'] = {}, for p # mn [155]. In the presence of

both y and g, the (complete) log-likelihood can be written as

no K N

L(.(@(;.;J. y,z} — Z Z 2};:’ log [t'::mp.,,,(y[j" |I’)m)}, z ;= 1.

==l i=l
(18)

The TM algorithim proceeds by alternatively applying the
following (wo steps:
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e FBestep: Compute the conditional expectation of the
complete log- hkthood (given y and the current
parameter estimate, © Ir ). Since (18) is linear in the
missing variables, the step for mixtures reduces to
the computalion of the conditional expectatum of the
missing variables: w(i = [z\!}‘}]@)L y).

o  M-step: Update the parameter estlmatce:
0“ |—1}_ - arg maxOmQ(Quq, @Eg])

For the mixing probabilitics, this becomes

n

vl :
~{i+1 3
L’l‘gu fae— E 'w&),nl:l,Q,-'-,
n i—1

K-1 (19)
In the Gaussian case, cach ), consists of a mean
vector and a covariance matrix which are updated
using weighted versions (with weights &) of the
standard ML estimates [155].

The main difficultics in using EM for mixture model
fitting, which are current research topics, are: its local
nature, which makes it critically dependent on initialization;
the possibility of convergence to a point on the boundary of
the parameter space with unbounded likelihood (i.e,, onc of
the a,, approaches zero with the correspending covariance
becoming arbitrarily closc to singular).

8.2.3 Estimating the Number of Components

The ML critarion ean not be used to estimate the number of
mixture compenents because the maximized likelihood is a
nondecreasing, function of K, thereby making it useless as a
model selection criterion (selecling a value for X in this
case). This is a particular instance of the identifiability
problem where the classical (y*-based) hypothesis testing
cannol be used because the necessary regularity conditions
are not mot [155]. Several alternative approaches that have
been proposed arc summarized below.

EM-based approaches use the (fixed ) EM algorithm to
obtain a sequence of parameter cstimates for a range of
values of X, {G)(m, K = Kyan, ..., Kinax J5 the estimate of K
is then defined as the minimizer of some cost function,

Ko omp 11'1111;{{(3(@(;{),1(), K= i'(.uim--a‘z'(,,m}. (200
Most often, this cost function includes the maximized log-
likelihood function plus an additional term whose role is to
penalize large values of K. An obvious choice in this class is
to use the minimum description length (ML) criterion [10]
[138], but several other model selection criteria have been
proposed: Schwarz’s Bayesian inference criterion (BIC), the
minimum message length (MML) criterion, and Akaike’s
information eriterion (AIC) [2], [148], [167].

Resampling-based schemes and cross-validation-type
approaches have also been suggested; these techniques are
{computationally) much cleser to stochastic algorithms than
to the methods in the previous paragraph. Stochastic
approaches generally invaolve Markov chain Monte Carlo
(MCMC) [135] sampling and are far more computationally
intensive than EM. MCMC has been used in two different
ways: to implement model selection criteria to actually
estimate K; and, with a more “fully Bayesian Havor”, to
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sample from the full a posteriori distribution where K is
included as an unknown. Despite their formal appeal, we
think that MCMC-based techniques are still far too compu-
tationally demanding to be useful in pattern recognition
applications.

Fig. 13 shows an example of mixtare decomposition,
where K is selected using a modified MDL criterion [51].
The data consists of 800 two-dimensional patterns distrib-
uted over three Gaussian components; two of the compo-
nents have the same mean vector but different covariance
matrices and that is why one dense cloud of poinis is inside
ancther cloud of rather sparse points. The level curve
contours {of constant Mahalanobis distance) for the true
underlying mixture and the estimated mixture are super-
imposed on the data. For details, see [51]. Note that a
clustering algorithm such as X-means will not be able to
identify these three components, due to the substantial
overlap of two of these components,

9 DISCUSSION

In its early stage of development, statistical pattern recogni-
tion focused mainly on the core of the discipline: The
Bayesian decision rule and its various derivatives (such as
linear and quadratic discriminant functions), density estima-
tion, the curse of dimensionality problem, and error
estimation, 1Jue to the limited computing power available
in the 1960s and 1970s, statistical pattern recognition
employed relatively simple techniques whiclt were applied
to small-scale problems.

Since the early 1980s, statistical pattern recognition has
experienced a rapid growth. Its frontiers have been
expanding in many directions simultaneously. This rapid
expansion is largely driven by ihe following forces.

. Increasing interaction and collaboration among
different disciplines, including newral networks,
machine learning, statistics, mathematics, computer
scicnee, and biology. These multidisciplinary cfforts
have fostered new ideas, methodologics, and tech-
niques which enrich the traditional statistical pattern
recognition paradigm.

2. The prevalence of fast processors, the Internet, large
and inexpensive memory and storage. The advanced
computer technology has made it possible to
implement complex learning, searching and optimi-
zation algorithms which was not feasible a few
decades ago. 1 also allows us to tackle large-scale
real world pattern recognition problems which may
involve millions of samples in high dimensional
spaces (thousands of features).

3. Emerging applications, such as data mining and
document taxonomy creation and maintenance,
These emerging applications have brought new
challenges that foster a renewed interest in statistical
pattern recognition research.

4. Lasl, but not the least, the need for a principled,
rather than ad hoc approach for successfully solving
pattern recognition problems in a predictable way.
For example, many concepls in neutal nelworks,
which were inspired by biological neural networks,
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Fig.13. Mixture Decomposition Example.

can be directly treated in a principled way in
statistical pattern recognition.

9.1 Frontiers of Pattern Recognition

Table 11 summarizes several topics which, in our opinion,
are at the frontiers of pattern recognition. As we can sce
from Table 11, many fundamental research problems in
statistical patlern recognilion remain at the forefront even
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as the field continues to grow. One such example, model
selection {which is an important issue in avoiding the curse
of dimensionality), has been a topic of continued research
interest. A common practice in model selection relies on
cross-validation {rotation method), where the best model is
selected based on the performance on the validation set.
Since the validation set is not used in training, this method
does not fully utilize the precions data for training which is
especially undesirable when the training data set is small.
To avoid this problem, a number of meodel selection
schemes [71] have been proposed, including Bayesian
methods [14], minimum description length (MDL) [138],
Akaike information criterion (AIC) [2] and marginalized
likelihood [101], [159]. Varicus other regularization schemes
which incorporate prior knowledge about model structure
and parameters have also been proposed. Structural risk
minimization based on the notion of VC dimension has also
been used for model selection where the best model is the
one with the best worsl-case performance (upper bound on
the generalization error) [162]. However, these methods do
not reduce the complexity of the search for the best model.
Typically, the complexity measure has to be evalualed for
every possible model or in a set of prespecified models.
Certain assumplions (o.g., parameter independence) are
often made in order to simplify the complexity evaluation,
Model selectien based on stochastic complexity has beon
applied to feature selection in both supervised learning and
unsupervised learning [159] and pruning in decision

TABLE 11
Frontiers of Palterm Recognition

Topic

Examples

Comments

Model selection and generalizatlon |

Hayesian learning, MDIL, AIC,
marginalized Likelihood, structural
rigk.

Make Tull Use of the avallable data |
for sraining.

Mixture modellng and EM
algorithm

Clusterlng, denslty eatimatlon.

Soft membership; botter than k-
means clusierlng,

New objective funetions for lagsl-
Aeation

Maximum margln (§VMa), regu-
latized cost.

Provide low VO dimengion and |
goad goncralzation,

Optimlzation methads

Local declslon boundary learning

Quadratlc programming:
lincar programming.

§VMs, Boasting, mixture of locai
exports.

"Loads 1o supvort vectors;

bulltdn feature selection.

Tocus on boundary patterns.

Soquential pattern recognivion

Hidden Markov Models (HMMs),
recurrent networks.

Successtully applled ta speech and
handwilting recognltian.

“Local-invarlant (dig}imarity mea-
gares

Deformablo template matching,
tengens disgtance.

Tadependent component analysis

Blind source separailon, feature
exjrashion,

Invariant o lacal distortlons,

Exiract statistically indopondent
cOMpEnonts.

[ "Combining multiplo classifors
Seml-guporvised learning

Soe Tablo 7.

Improve recognltlon accuracy.

Training of characier and
document classiflers.

Make use of unlabeled data.

Use of context

Spoach recognition, OCR,
documoent catogorizakion.

Regolve ambigu'ty.

Emetging applications

Data mining and Knowledge dis-
covery, Document categorization,
Imege database retrloval,
Financlel forecasting, Biometric
recognltlon (fingerpring, irls, face,
volee, handwriting and gignaiure).

Large volume, high dimenslon,
mixed data iy pes, missing data,
data modeling, model asloction.
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troes [106]. In the latter case, the best number of clusters is
also automatically determined.

Another example is mixture modeling using EM algo-
rithm {see Scction 8.2), which was proposed in 1977 [36],
and which is now a very popular approach for density
estimation and clustering [159], due te the computing
power available today.

Over the recent years, a number of new concepts and
techniques have also been introduced. For example, the
maximum margin objective was introduced in the context
of support vector machines [23] based on structural risk
minimization theory [162]. A classifior with a large margin
separating two classes has a small VC dimension, which
yields a good generalization performance. Many successful
applications of SYMs have demonstrated the superiorily of
this objective function over others [72]. It is found that the
boosting algorithm [143] also improves the margin dis-
tribution, The maximum margin objeclive can be consid-
ered as a special regularized cost function, where the
regularizor is the inverse of the margin between the two
classes. Other regularized cost functions, such as weight
decay and weight elimination, have also been used in the
context of neural networks.

Due to the introduction of SVMs, linear and quadratic
programming optimization lechniques are once again being
extensively studied for pattern classification, Quadratic
programming is ctedited for leading to the nice property
that the decision boundary is fully specified by boundary
patterns, while linear programming with the L' norm or the
inverse of the margin yiclds a small set of foatures when the
optimal solution is obtained.

The topic of local decision boundary learning has also
received a lot of attention, Tts primary emphasis is on using
patterns near the boundary of different classes fo construct
or modify the declsion boundary, One such an example is
the boosting algorithm and its variation (AdaBoost) where
misclassified patterns, mostly near the decision bonmdary,
are subsampled with higher probabilities than correctly
classified patterns to form a new training sct for training
subsequent classifiers. Combination of local experts is also
related to this concept, since local experts can learn local
decision boundaries more accurately than global methods.
In gonoral, classifier combinalion could refine decision
boundary such that its variance with respect to Bayes
decision boundary is reduced, leading to improved
recognition accuracy [158].

Sequential data arise in many real world problems, such
as speech and on-line handwriting. Sequential pattern
recognition has, therefore, become a very important topic
in pattern recognition. Hidden Markov Madels (HMM),
have been a popular statistical tool for modeling and
recognizing sequential data, in particular, speech data
[130], [86]. A large number of variations and enhancements
of HMMs have been proposed in the literature [12],
including hybrids of HMMs and neural networks, input-
output HMMs, weighted transducors, variable-duration
HMMs, Markov switching madels, and switching stale-
space models.

The growth in sensor technology and compuling
power has enriched the availability of data in several
ways. Real world objects can now be represented by
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many mere measurcments and sampled at high rates, As
physical objecls have a finite complexity, these measure-
ments are generally highly correlated. This explains why
models using spatial and spectral correlation in images,
or the Markov struclure in spesch, or subspacc ap-
proaches in gencral, have become so important; they
compress the data lo what is physically meaningful,
thereby improving the classification accuracy simulta-
neously.

Supervised learning requires that every training sample
be labeled with its true category. Collecting a large amount
of labeled data can sometimes be very expensive. In
practice, we often have a small amount of labeled data
and a large amount of unlabeled data. How to make use of
unlabeled data for training a classifier is an important
problem, SYM has been extended to perform semisuper-
vised learning [13].

Invariant pattern recognition is desirable in many
applications, auch as character and face recognition. Early
research in slalistical pattern recognition did cmphasize
extraction of invariant features which turns out to be a very
difficult task. Recently, there has been some activity in
designing invariant recognition methods which do not
require invariant featurcs. Examples are the ncarest
neighbor c¢lassifier using tangent distance [152] and
deformable template matching [84]. These approaches only
achieve invariance to small amounts of linear lransfcima-
tions and nonlincar deformations, Besides, they are
compulationally very intensive. Simard ot al. [153] pro-
posed an algorithm named Tangent-Prop to minimize the
derivative of the classifier outputs with respect to distortion
parameters, i.e,, to improve the invariance property of the
classifier to the selected distortion. This makes the trained
clagsifier computationally very efficient.

1t is well-known that the human recognition process
relics heavily on context, knowledge, and experience, The
cifectiveness of using contextual information in resolving
ambiguity and recognizing difficult patterns in the major
differentiator between recognition abilities of human beings
and machines. Contextual information has been success-
fully used in speech recognition, OCR, and remote sensing
[173]. It is commonly used as a poslprocessing step Lo
correct mistakes in the initia) recognition, but there is a
recent trend to bring contextual information in the earlier
stages (e.g., word segmentation) of a recognilion system
[174]. Context information is often incorporaled through the
use of compound decision theory derived from Bayes
theory or Markovian models {175]. One recent, successful
application is the hyportext classifier [176] where the
recognition of a hypertext document {e.g., a web page)
can be dramatically improved by iteratively incorporating
the category informaltion of other documents that peint to or
are pointed by this document.

9.2 Concluding Remarks

Watanabe [164] wrate in the preface of the 1972 book he
edited, enlitled Frontiers of Patlern Recogiition, that “Patiern
recognition is a fast-moving and proliferating discipline. It
is not easy to form a well-balanced and well-informed
summary view of the newest developments in this field. Tt
is still harder to have a vision of ils future progress.”
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